Bottom-up induction of feature terms

被引:35
作者
Armengol, E [1 ]
Plaza, E [1 ]
机构
[1] CSIC, Artificial Intelligence Res Inst, Bellaterra 08193, Catalonia, Spain
关键词
Inductive Logic Programming; relational learning; concept induction; feature structures;
D O I
10.1023/A:1007677713969
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The aim of relational learning is to develop methods for the induction of hypotheses in representation formalisms that are more expressive than attribute-value representation. Most work on relational learning has been focused on induction in subsets of first order logic like Horn clauses. In this paper we introduce the representation formalism based on feature terms and we introduce the corresponding notions of subsumption and anti-unification. Then we explain INDIE, a heuristic bottom-up learning method that induces class hypotheses, in the form of feature terms, from positive and negative examples. The biases used in INDIE while searching the hypothesis space are explained while describing INDIE's algorithms. The representational bias of INDIE can be summarised in that it makes an intensive use of sorts and sort hierarchy, and in that it does not use negation but focuses on detecting path equalities. We show the results of INDIE in some classical relational datasets showing that it's able to find hypotheses at a level comparable to the original ones. The differences between INDIE's hypotheses and those of the other systems are explained by the bias in searching the hypothesis space and on the representational bias of the hypothesis language of each system.
引用
收藏
页码:259 / 294
页数:36
相关论文
共 15 条
[1]   TOWARDS A MEANING OF LIFE [J].
AITKACI, H ;
PODELSKI, A .
JOURNAL OF LOGIC PROGRAMMING, 1993, 16 (3-4) :195-234
[2]  
ARMENGOL E, 1998, INDIE BOTTOM UP METH
[3]  
CARPENTER B, 1992, TRACTS THEORETICAL C
[4]   A DISTANCE-BASED ATTRIBUTE SELECTION MEASURE FOR DECISION TREE INDUCTION [J].
DEMANTARAS, RL .
MACHINE LEARNING, 1991, 6 (01) :81-92
[5]   CONNECTIONIST LEARNING PROCEDURES [J].
HINTON, GE .
ARTIFICIAL INTELLIGENCE, 1989, 40 (1-3) :185-234
[6]   A POLYNOMIAL APPROACH TO THE CONSTRUCTIVE INDUCTION OF STRUCTURAL KNOWLEDGE [J].
KIETZ, JU ;
MORIK, K .
MACHINE LEARNING, 1994, 14 (02) :193-217
[7]  
KIETZ JU, 1993, P 10 INT C MACH LEAR, P130
[8]  
LAVRAC N, 1991, LECT NOTES ARTIFICIA, V482
[9]  
Lavrac N., 1994, INDUCTIVE LOGIC PROG