Determination of cerebral glucose transport and metabolic kinetics by dynamic MR spectroscopy

被引:36
作者
van Zijl, PCM
Davis, D
Eleff, SM
Moonen, CTW
Parker, RJ
Strong, JM
机构
[1] Johns Hopkins Univ, Sch Med, Dept Radiol, Baltimore, MD 21205 USA
[2] Johns Hopkins Univ, Sch Med, Dept Anesthesiol & Crit Care, Baltimore, MD 21205 USA
[3] NIH, In Vivo Nucl Magnet Resonance Res Ctr, Biomed Engn & Instrumentat Program, Natl Ctr Res Resources, Bethesda, MD 20892 USA
[4] US FDA, Ctr Drug Evaluat & Res, Off Res Resources, Div Clin Pharmacol, Rockville, MD 20850 USA
[5] Univ Victor Segalen 2, Unite Mixte Rech Resonance Magnet Syst Biol 5536, CNRS, F-33076 Bordeaux, France
来源
AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM | 1997年 / 273卷 / 06期
关键词
C-13]glucose utilization; brain; Michaelis-Menten kinetics; cat; nuclear magnetic resonance spectroscopy;
D O I
10.1152/ajpendo.1997.273.6.E1216
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
A new in vivo nuclear magnetic resonance (NMR) spectroscopy method is introduced that dynamically measures cerebral utilization of magnetically labeled [1-C-13]glucose from the change in total brain glucose signals on infusion, Kinetic equations are derived using a four-compartment model incorporating glucose transport and phosphorylation. Brain extract data show that the glucose B-phosphate concentration is negligible relative to glucose, simplifying the kinetics to three compartments and allowing direct determination of the glucose-utilization half-life time [t(1/2) = 1n2/(k(2) + k(3))] from the time dependence of the NMR signal. Results on isofluorane (n = 5)- and halothane (n = 7)- anesthetized cats give a hyperglycemic t(1/2) = 5.10 +/- 0.11 min(-1) (SE). Using Michaelis-Menten kinetics and an assumed half-saturation constant K-t = 5 +/- 1 mM, we determined a maximal transport, rate T-max = 0.83 +/- 0.19 mu mol.g(-1).min(-1), a cerebral metabolic rate of glucose CMRGlc = 0.22 +/- 0.03 mu mol.g(-1).min(-1), and a normoglycemic cerebral influx rate CIRGlc = 0.37 +/- 0.05 mu mol.g(-1).min(-1). Possible extension of this approach to positron emission tomography and proton NMR is discussed.
引用
收藏
页码:E1216 / E1227
页数:12
相关论文
共 31 条
  • [1] ANCHORS JM, 1977, J BIOL CHEM, V252, P7035
  • [2] Beckmann N, 1995, CARBON 13 NMR SPECTR, P269
  • [3] BECKMANN N, 1992, NMR BASIC PRINCIPLES, P73
  • [4] DETECTION OF METABOLITES IN RABBIT BRAIN BY C-13 NMR-SPECTROSCOPY FOLLOWING ADMINISTRATION OF [1-C-13]GLUCOSE
    BEHAR, KL
    PETROFF, OAC
    PRICHARD, JW
    ALGER, JR
    SHULMAN, RG
    [J]. MAGNETIC RESONANCE IN MEDICINE, 1986, 3 (06) : 911 - 920
  • [5] FLUORODEOXYGLUCOSE BRAIN METABOLISM STUDIED BY NMR AND PET
    BOLO, NR
    BRENNAN, KM
    JONES, RM
    BUDINGER, TF
    [J]. ANNALS OF THE NEW YORK ACADEMY OF SCIENCES, 1987, 508 : 451 - 459
  • [6] DOSE DEPENDENT REDUCTION OF GLUCOSE-UTILIZATION BY PENTOBARBITAL IN RAT-BRAIN
    CRANE, PD
    BRAUN, LD
    CORNFORD, EM
    CREMER, JE
    GLASS, JM
    OLDENDORF, WH
    [J]. STROKE, 1978, 9 (01) : 12 - 18
  • [7] THE INTERACTION OF TRANSPORT AND METABOLISM ON BRAIN GLUCOSE-UTILIZATION - A RE-EVALUATION OF THE LUMPED CONSTANT
    CRANE, PD
    PARDRIDGE, WM
    BRAUN, LD
    NYERGES, AM
    OLDENDORF, WH
    [J]. JOURNAL OF NEUROCHEMISTRY, 1981, 36 (04) : 1601 - 1604
  • [8] THE FLUX FROM GLUCOSE TO GLUTAMATE IN THE RAT-BRAIN INVIVO AS DETERMINED BY H-1-OBSERVED, C-13-EDITED NMR-SPECTROSCOPY
    FITZPATRICK, SM
    HETHERINGTON, HP
    BEHAR, KL
    SHULMAN, RG
    [J]. JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 1990, 10 (02) : 170 - 179
  • [9] GJEDDE A, 1995, PRINCIPLES NUCL MED, P54
  • [10] GJEDDE A, 1992, HDB EXPT PHARM, P65