Simulating non-commutative field theory

被引:31
作者
Bietenholz, W
Hofheinz, F
Nishimura, J
机构
[1] Humboldt Univ, D-10115 Berlin, Germany
[2] Free Univ Berlin, D-14195 Berlin, Germany
[3] Nagoya Univ, Dept Phys, Nagoya, Aichi 4648602, Japan
关键词
D O I
10.1016/S0920-5632(03)01726-2
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Non-commutative (NC) field theories can be mapped onto twisted matrix models. This mapping enables their Monte Carlo simulation, where the large N limit of the matrix models describes the continuum limit of NC field theory. First we present numeric results for 2d NC gauge theory of rank 1, which turns out to be renormalizable. The area law for the Wilson loop holds at small area, but at large area we observe a rotating phase, which corresponds to an Ahaxonov-Bohm effect. Next we investigate the NC phi(4) model in d = 3 and explore its phase diagram. Our results agree with a conjecture by Gubser and Sondhi in d = 4, who predicted that the ordered regime splits into a uniform phase and a phase dominated by stripe patterns.
引用
收藏
页码:941 / 946
页数:6
相关论文
共 18 条
[1]   Nonperturbative dynamics of noncommutative gauge theory [J].
Ambjorn, J ;
Makeenko, YM ;
Nishimura, J ;
Szabo, RJ .
PHYSICS LETTERS B, 2000, 480 (3-4) :399-408
[2]  
Ambjorn J, 2000, J HIGH ENERGY PHYS
[3]  
Ambjorn J., 1999, J HIGH ENERGY PHYS, V9911
[4]  
BIETENHOLZ W, UNPUB
[5]  
BIETENHOLZ W, HEPTH0203151, P54503
[6]   Noncommutative field theory [J].
Douglas, MR ;
Nekrasov, NA .
REVIEWS OF MODERN PHYSICS, 2001, 73 (04) :977-1029
[7]   HEAT BATH METHOD FOR THE TWISTED EGUCHI-KAWAI MODEL [J].
FABRICIUS, K ;
HAAN, O .
PHYSICS LETTERS B, 1984, 143 (4-6) :459-462
[8]  
FABRICIUS K, 1983, PHYS LETT B, V131, P399, DOI 10.1016/0370-2693(83)90527-0
[9]   MAGNETO-ROTON THEORY OF COLLECTIVE EXCITATIONS IN THE FRACTIONAL QUANTUM HALL-EFFECT [J].
GIRVIN, SM ;
MACDONALD, AH ;
PLATZMAN, PM .
PHYSICAL REVIEW B, 1986, 33 (04) :2481-2494
[10]   TWISTED-EGUCHI-KAWAI MODEL - A REDUCED MODEL FOR LARGE-N LATTICE GAUGE-THEORY [J].
GONZALEZARROYO, A ;
OKAWA, M .
PHYSICAL REVIEW D, 1983, 27 (10) :2397-2411