A biofuel cell with enhanced power output by grape juice

被引:58
作者
Liu, Ying
Dong, Shaojun [1 ]
机构
[1] Changchun Inst Appl Chem, State Key Lab Electroanalyt Chem, Changchun 130022, Peoples R China
[2] Chinese Acad Sci, Grad Sch, Beijing 100039, Peoples R China
关键词
biofuel cells; glucose; grape juice; power output; ionic liquid; carbon nanotube;
D O I
10.1016/j.elecom.2007.01.055
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Glucose oxidase and laccase immobilized at multiwalled carbon nanotubes-ionic liquid gel modified electrodes are used as the catalysts of anode and cathode of biofuel cells (BFCs), respectively. The BFC based on glucose and air is proposed. When ferrocene monocarboxylic acid is adopted as the mediator of anode, the power output of the BFC is ca. 4.1 mu W (power density ca. 10.0 mu W cm(-2)), which is higher than the value of 2.7 mu W (power density ca. 6.6 mu W cm(-2)) by taking ferrocene dicarboxylic acid as the mediator. This implies that the mediator with formal potential closing to that of the enzyme does improve the power output. Furthermore, the power output of the BFC is greatly improved by taking grape juice as the fuel of anode rather than glucose. This system also indicates that grape juice as a fuel of the BFC not only is feasible and can also enhances the power output of the BFCs. Besides, it greatly lowers the cost and simplifies the preparation procedure of the BFCs, making the BFC towards "green" bioenergy. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:1423 / 1427
页数:5
相关论文
共 35 条
[1]   NAD(+)-dependent enzyme electrodes: Electrical contact of cofactor-dependent enzymes and electrodes [J].
Bardea, A ;
Katz, E ;
Buckmann, AF ;
Willner, I .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1997, 119 (39) :9114-9119
[2]   Enzymatic biofuel cells for Implantable and microscale devices [J].
Barton, SC ;
Gallaway, J ;
Atanassov, P .
CHEMICAL REVIEWS, 2004, 104 (10) :4867-4886
[3]  
BOCKRIS OM, 1969, FUEL CELLS THEIR ELE, pCH4
[4]   FERROCENE-MEDIATED ENZYME ELECTRODE FOR AMPEROMETRIC DETERMINATION OF GLUCOSE [J].
CASS, AEG ;
DAVIS, G ;
FRANCIS, GD ;
HILL, HAO ;
ASTON, WJ ;
HIGGINS, IJ ;
PLOTKIN, EV ;
SCOTT, LDL ;
TURNER, APF .
ANALYTICAL CHEMISTRY, 1984, 56 (04) :667-671
[5]   A miniature biofuel cell [J].
Chen, T ;
Barton, SC ;
Binyamin, G ;
Gao, ZQ ;
Zhang, YC ;
Kim, HH ;
Heller, A .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2001, 123 (35) :8630-8631
[6]   Organically modified sol-gel/chitosan composite based glucose biosensor [J].
Chen, X ;
Jia, JB ;
Dong, SJ .
ELECTROANALYSIS, 2003, 15 (07) :608-612
[7]  
Delahay P., 1965, DOUBLE LAYER ELECTRO
[8]   Molecular ordering of organic molten salts triggered by single-walled carbon nanotubes [J].
Fukushima, T ;
Kosaka, A ;
Ishimura, Y ;
Yamamoto, T ;
Takigawa, T ;
Ishii, N ;
Aida, T .
SCIENCE, 2003, 300 (5628) :2072-2074
[9]   A biofuel cell based on two immiscible solvents and glucose oxidase and microperoxidase-11 monolayer-functionalized electrodes [J].
Katz, E ;
Filanovsky, B ;
Willner, I .
NEW JOURNAL OF CHEMISTRY, 1999, 23 (05) :481-487
[10]   A non-compartmentalized glucose|O2 biofuel cell by bioengineered electrode surfaces [J].
Katz, E ;
Willner, I ;
Kotlyar, AB .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1999, 479 (01) :64-68