Commercial baker's yeast stability as affected by intracellular content of trehalose, dehydration procedure and the physical properties of external matrices

被引:60
作者
Cerrutti, P
de Huergo, MS
Galvagno, M
Schebor, C
Buera, MD
机构
[1] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Ind, RA-1428 Buenos Aires, DF, Argentina
[2] Univ Buenos Aires, Fac Ingn, Dept Ingn Quim, RA-1428 Buenos Aires, DF, Argentina
[3] Consejo Nacl Invest Cient & Tecn, Ctr Nacl Invest, Cient & Tecn Republ Argentina, Buenos Aires, DF, Argentina
关键词
D O I
10.1007/s002530000428
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The effects of vacuum-drying and freeze-drying on the cell viability of a commercial baker's yeast, Saccharomyces cerevisiae, strain with different endogenous contents of trehalose were analyzed. An osmotolerant Zygosaccharomyces rouxii strain was used for comparative purposes. Higher viability values were observed in cells after vacuum-drying than after freeze-drying. Internal concentrations of trehalose in the range 10-20% protected cells in both dehydration processes. Endogenous trehalose concentrations did not affect the water sorption isotherm nor the T-g values. The effect of external matrices of trehalose and maltodextrin was also studied. The addition of external trehalose improved the survival of S. cerevisiae cells containing 5% internal trehalose during dehydration. Maltodextrin (1.8 kDa) failed to protect vacuum-dried samples at 40 degreesC. The major reduction in the viability during the freeze-drying process of the sensitive yeast cells studied was attributed to the freezing step. The suggested protective mechanisms for each particular system are vitrification and the specific interactions of trehalose with membranes and/or proteins. The failure of maltodextrins to protect cells was attributed to the fact that none of the suggested mechanisms of protection could operate in these systems.
引用
收藏
页码:575 / 580
页数:6
相关论文
共 37 条
[1]  
[Anonymous], [No title captured]
[2]   STABILIZATION OF PROTEIN-STRUCTURE BY SUGARS [J].
ARAKAWA, T ;
TIMASHEFF, SN .
BIOCHEMISTRY, 1982, 21 (25) :6536-6544
[3]   CONSTRUCTION OF SACCHAROMYCES-CEREVISIAE STRAINS THAT ACCUMULATE RELATIVELY LOW CONCENTRATIONS OF TREHALOSE, AND THEIR APPLICATION IN TESTING THE CONTRIBUTION OF THE DISACCHARIDE TO STRESS TOLERANCE [J].
ATTFIELD, PV ;
RAMAN, A ;
NORTHCOTT, CJ .
FEMS MICROBIOLOGY LETTERS, 1992, 94 (03) :271-276
[4]   Stress tolerance: The key to effective strains of industrial baker's yeast [J].
Attfield, PV .
NATURE BIOTECHNOLOGY, 1997, 15 (13) :1351-1357
[6]   VIABILITY AND STABILITY OF YEAST-CELLS AND FILAMENTOUS FUNGUS SPORES DURING FREEZE-DRYING - EFFECTS OF PROTECTANTS AND COOLING RATES [J].
BERNY, JF ;
HENNEBERT, GL .
MYCOLOGIA, 1991, 83 (06) :805-815
[7]   Thermal stability of invertase in reduced-moisture amorphous matrices in relation to glassy state and trehalose crystallization [J].
Cardona, S ;
Schebor, C ;
Buera, MP ;
Karel, M ;
Chirife, J .
JOURNAL OF FOOD SCIENCE, 1997, 62 (01) :105-112
[8]   STABILIZATION OF DRY PHOSPHOLIPID-BILAYERS AND PROTEINS BY SUGARS [J].
CROWE, JH ;
CROWE, LM ;
CARPENTER, JF ;
WISTROM, CA .
BIOCHEMICAL JOURNAL, 1987, 242 (01) :1-10
[9]   The role of vitrification in anhydrobiosis [J].
Crowe, JH ;
Carpenter, JF ;
Crowe, LM .
ANNUAL REVIEW OF PHYSIOLOGY, 1998, 60 :73-103
[10]   EFFECTS OF CARBOHYDRATES ON MEMBRANE STABILITY AT LOW WATER ACTIVITIES [J].
CROWE, LM ;
MOURADIAN, R ;
CROWE, JH ;
JACKSON, SA ;
WOMERSLEY, C .
BIOCHIMICA ET BIOPHYSICA ACTA, 1984, 769 (01) :141-150