Life under nutrient limitation in oligotrophic marine environments:: An eco/physiological perspective of Sphingopyxis alaskensis (formerly Sphingomonas alaskensis)

被引:75
作者
Cavicchioli, R [1 ]
Ostrowski, M [1 ]
Fegatella, F [1 ]
Goodchild, A [1 ]
Guixa-Boixereu, N [1 ]
机构
[1] Univ New S Wales, Sch Biotechnol & Biomol Sci, Sydney, NSW 2052, Australia
关键词
D O I
10.1007/s00248-002-3008-6
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
The oceans of the world are nutrient-limited environments that support a dynamic diversity of microbial life. Heterotrophic prokaryotes proliferate in oligotrophic regions and affect nutrient transformation and remineralization thereby impacting directly on the all marine biota. An important challenge in studying the microbial ecology of oligotrophic environments has been the isolation of ecologically important species. This goal has been recognized not only for its relevance in defining the dynamics of community composition, but for enabling physiological studies of competitive species and inferring their impact on the microbial food web. This review describes the successful isolation attempts of the ultramicrobacterium, Sphingopyxis alaskensis (formerly described as Sphingomonas alaskensis) using extinction dilution culturing methods. It then provides a comprehensive perspective of the unique physiological and genetic properties that have been identified that distinguish it from typical copiotrophic species. These properties are described through studies of the growth phase and growth rate control of macromolecular synthesis, stress resistance and global gene expression (proteomics). We also discuss the importance of integrating ecological and physiological approaches for studying microorganisms in marine environments.
引用
收藏
页码:203 / 217
页数:15
相关论文
共 99 条
[1]   Battle lines drawn between 'nanobacteria' researchers [J].
Abbott, A .
NATURE, 1999, 401 (6749) :105-105
[2]   Microbial control of oceanic carbon flux: The plot thickens [J].
Azam, F .
SCIENCE, 1998, 280 (5364) :694-696
[3]   THE ELECTROPHORETIC MOBILITY OF GRAM-NEGATIVE AND GRAM-POSITIVE BACTERIA - AN ELECTROKINETIC ANALYSIS [J].
BAYER, ME ;
SLOYER, JL .
JOURNAL OF GENERAL MICROBIOLOGY, 1990, 136 :867-874
[4]   Genetic diversity of total, active and culturable marine bacteria in coastal seawater [J].
Bernard, L ;
Schäfer, H ;
Joux, F ;
Courties, C ;
Muyzer, G ;
Lebaron, P .
AQUATIC MICROBIAL ECOLOGY, 2000, 23 (01) :1-11
[5]  
Bremer H., 1996, ESCHERICHIA COLI SAL, V1553
[6]   Cyclic AMP and acyl homoserine lactones increase the cultivation efficiency of heterotrophic bacteria from the central Baltic Sea [J].
Bruns, A ;
Cypionka, H ;
Overmann, J .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2002, 68 (08) :3978-3987
[7]   Effect of nutrient kinetics and cytoarchitecture on bacterioplankter size [J].
Button, DK ;
Robertson, B .
LIMNOLOGY AND OCEANOGRAPHY, 2000, 45 (02) :499-505
[8]   VIABILITY AND ISOLATION OF MARINE-BACTERIA BY DILUTION CULTURE - THEORY, PROCEDURES, AND INITIAL RESULTS [J].
BUTTON, DK ;
SCHUT, F ;
QUANG, P ;
MARTIN, R ;
ROBERTSON, BR .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1993, 59 (03) :881-891
[9]   Determination of DNA content of aquatic bacteria by flow cytometry [J].
Button, DK ;
Robertson, BR .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2001, 67 (04) :1636-1645
[10]   Chaperone properties of bacterial elongation factor EF-G and initiation factor IF2 [J].
Caldas, T ;
Laalami, S ;
Richarme, G .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (02) :855-860