Efficiently updating and tracking the dominant kernel principal components

被引:34
作者
Hoegaerts, L.
De lathauwer, L.
Goethals, I.
Suykens, J. A. K.
Vandewalle, J.
De Moor, B.
机构
[1] Katholieke Univ Leuven, Dept Elect Engn, ESAT, SCD,SISTA, B-3001 Louvain, Heverlee, Belgium
[2] UCP, ENSEA, CNRS, ETIS,UMR 8051, F-95014 Cergy Pontoise, France
关键词
dominant eigenspace; eigenvalues; updating; tracking; kernel gram matrix; prinicipal components; large scale data;
D O I
10.1016/j.neunet.2006.09.012
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The dominant set of eigenvectors of the symmetrical kernel Gram matrix is used in many important kernel methods (like e.g. kernel Principal Component Analysis, feature approximation, denoising, compression, prediction) in the machine learning area. Yet in the case of dynamic and/or large-scale data, the batch calculation nature and computational demands of the eigenvector decomposition limit these methods in numerous applications. In this paper we present an efficient incremental approach for fast calculation of the dominant kernel eigenbasis, which allows us to track the kernel eigenspace dynamically. Experiments show that our updating scheme delivers a numerically stable and accurate approximation for eigenvalues and eigenvectors at every iteration in comparison to the batch algorithm. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:220 / 229
页数:10
相关论文
共 24 条
[1]   Sliding window adaptive SVD algorithms [J].
Badeau, R ;
Richard, G ;
David, B .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2004, 52 (01) :1-10
[2]  
Basseville M., 1993, DETECTION ABRUPT CHA
[3]  
Blake C.L., 1998, UCI repository of machine learning databases
[4]   UPDATING SINGULAR VALUE DECOMPOSITION [J].
BUNCH, JR ;
NIELSEN, CP .
NUMERISCHE MATHEMATIK, 1978, 31 (02) :111-129
[5]  
BUSINGER PA, 1970, BIT, V10, P376, DOI DOI 10.1007/BF01934207
[6]   An eigenspace update algorithm for image analysis [J].
Chandrasekaran, S ;
Manjunath, BS ;
Wang, YF ;
Winkeler, J ;
Zhang, H .
GRAPHICAL MODELS AND IMAGE PROCESSING, 1997, 59 (05) :321-332
[7]  
Cherkassky V, 1997, IEEE Trans Neural Netw, V8, P1564, DOI 10.1109/TNN.1997.641482
[8]  
Golub GH., 2013, Matrix Computations, DOI 10.56021/9781421407944
[9]  
GUYON I, 1989, P INT JOINT C NEUR N, V2
[10]   Feature extraction and denoising using kernel PCA [J].
Jade, AM ;
Srikanth, B ;
Jayaraman, VK ;
Kulkarni, BD ;
Jog, JP ;
Priya, L .
CHEMICAL ENGINEERING SCIENCE, 2003, 58 (19) :4441-4448