Elucidating differences between carbon paper and carbon cloth in polymer electrolyte fuel cells

被引:166
作者
Wang, Yun
Wang, Chao-Yang [1 ]
Chen, K. S.
机构
[1] Penn State Univ, Dept Mech & Nucl Engn, Electrochem Engine Ctr, University Pk, PA 16802 USA
[2] Sandia Natl Labs, Engn Sci Ctr, Albuquerque, NM 87185 USA
关键词
polymer electrolyte fuel cell; modeling; two-phase flow; carbon cloth; carbon paper;
D O I
10.1016/j.electacta.2006.11.012
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
This paper seeks to develop a structure-performance relationship for gas diffusion layers (GDLs) of polymer electrolyte fuel cells (PEFCs), and hence to explain the performance differences between carbon paper (CP) and carbon cloth (CC). Three-dimensional simulations, based on a two-phase model with GDL structural information taken into account, are carried out to explore the fundamentals behind experimentally observed performance differences of the two carbon substrates, i.e. CC and CP, under low- and high-humidity operations. Validation against polarization data is made under both operating conditions, and the results indicate that the CC is the better choice as a GDL material at high-humidity operations due to its low tortuosity of the pore structure and its rough textural surface facilitating droplet detachment. However, under dry conditions, the CP shows better performance due to its more tortuous structure, which prevents the loss of product water to dry gas streams, thus increasing the membrane hydration level and reducing the ohmic loss. The present work is one step toward developing a science-based framework for selection of materials for next-generation, high-performance gas diffusion media. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3965 / 3975
页数:11
相关论文
共 40 条
[1]  
[Anonymous], 1980, SERIES COMPUTATIONAL, DOI [DOI 10.1201/9781482234213, 10.1201/9781482234213]
[2]   Water flow in the gas diffusion layer of PEM fuel cells [J].
Benziger, J ;
Nehlsen, J ;
Blackwell, D ;
Brennan, T ;
Itescu, J .
JOURNAL OF MEMBRANE SCIENCE, 2005, 261 (1-2) :98-106
[3]   A MATHEMATICAL-MODEL OF THE SOLID-POLYMER-ELECTROLYTE FUEL-CELL [J].
BERNARDI, DM ;
VERBRUGGE, MW .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1992, 139 (09) :2477-2491
[4]   A 3D, multiphase, multicomponent model of the cathode and anode of a PEM fuel cell [J].
Berning, T ;
Djilali, N .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (12) :A1589-A1598
[5]   Examination of the influence of PTFE coating on the properties of carbon paper in polymer electrolyte fuel cells [J].
Bevers, D ;
Rogers, R ;
vonBradke, M .
JOURNAL OF POWER SOURCES, 1996, 63 (02) :193-201
[6]  
Bird R B., 2002, Transportphenomena
[7]   Analysis of a two-phase non-isothermal model for a PEFC [J].
Birgersson, E ;
Noponen, M ;
Vynnycky, M .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (05) :A1021-A1034
[8]   Simplified models for predicting the onset of liquid water droplet instability at the gas diffusion layer/gas flow channel interface [J].
Chen, KS ;
Hickner, MA ;
Noble, DR .
INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2005, 29 (12) :1113-1132
[9]   Three-dimensional numerical simulation of straight channel PEM fuel cells [J].
Dutta, S ;
Shimpalee, S ;
Van Zee, JW .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 2000, 30 (02) :135-146
[10]  
*FLUENT INC, 2003, FLUENT 6 1 UDF MAN