Neural systems operate in various dynamic states that determine how they process information (Livingstone and Hubel, 1981; Funke and Eysel, 1992; Morrow and Casey, 1992; Abeles et al., 1995; Guido et al., 1995; Mukherjee and Kaplan, 1995; Kenmochi and Eggermont, 1997; Worgotter et al., 1998; Kisley and Gerstein, 1999). To investigate the function of a brain area, it is therefore crucial to determine the state of that system. One grave difficulty is that even under well controlled conditions, the thalamocortical network may undergo random dynamic state fluctuations which alter the most basic spatial and temporal response properties of the neurons. These uncontrolled state changes hinder the evaluation of state-specific properties of neural processing and, consequently, the interpretation of thalamocortical function. Simultaneous extracellular recordings were made in the auditory thalamus and cortex of the ketamine-anesthetized cat under several stimulus conditions. By considering the cellular and network mechanisms that govern state changes, we develop a complex stimulus that controls the dynamic state of the thalamocortical network. Traditional auditory stimuli have ambivalent effects on thalamocortical state, sometimes eliciting an oscillatory state prevalent in sleeping animals and other times suppressing it. By contrast, our complex stimulus clamps the network in a dynamic state resembling that observed in the alert animal. It thus allows evaluation of neural information processing not confounded by uncontrolled variations. Stimulus-based state control illustrates a general and direct mechanism whereby the functional modes of the brain are influenced by structural features of the external world.