Detection of microaneurysms using multi-scale correlation coefficients

被引:166
作者
Zhang, Bob [2 ]
Wu, Xiangqian [1 ,3 ]
You, Jane [1 ]
Li, Qin [1 ]
Karray, Fakhri [2 ]
机构
[1] Hong Kong Polytech Univ, Dept Comp, Biometr Res Ctr, Kowloon, Hong Kong, Peoples R China
[2] Univ Waterloo, Dept Elect & Comp Engn, Waterloo, ON N2L 3G1, Canada
[3] Harbin Inst Technol, Sch Comp Sci & Technol, Harbin 150006, Peoples R China
关键词
Computer-aided diagnosis (CAD); Diabetic retinopathy (DR); Multi-scale correlation filtering; Microaneurysm (red lesion) detection; DIABETIC-RETINOPATHY; AUTOMATED DETECTION; RED LESIONS; SEGMENTATION; DIAGNOSIS;
D O I
10.1016/j.patcog.2009.12.017
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a new approach to the computer aided diagnosis (CAD) of diabetic retinopathy (DR) a common and severe complication of long-term diabetes which damages the retina and cause blindness. Since microaneurysms are regarded as the first signs of DR, there has been extensive research on effective detection and localization of these abnormalities in retinal images. In contrast to existing algorithms, a new approach based on multi-scale correlation filtering (MSCF) and dynamic thresholding is developed. This consists of two levels, microaneurysm candidate detection (coarse level) and true microaneurysm classification (fine level). The approach was evaluated based on two public datasets-ROC (retinopathy on-line challenge, http://roc.healthcare.uiowa.edu) and DIARETDB1 (standard diabetic retinopathy database, http://www.it.lut.fi/project/imageret/diaretdb1). We conclude our method to be effective and efficient. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2237 / 2248
页数:12
相关论文
共 29 条
[1]  
[Anonymous], DIARETDB1 STANDARD D
[2]  
[Anonymous], RETINOPATHY ONLINE C
[3]   Automated segmentation of the optic nerve head for diagnosis of glaucoma [J].
Chrástek, R ;
Wolf, M ;
Donath, K ;
Niemann, H ;
Paulus, D ;
Hothorn, T ;
Lausen, B ;
Lämmer, R ;
Mardin, CY ;
Michelson, G .
MEDICAL IMAGE ANALYSIS, 2005, 9 (04) :297-314
[4]   A fully automated comparative microaneurysm digital detection system [J].
Cree, MJ ;
Olson, JA ;
McHardy, KC ;
Sharp, PF ;
Forrester, JV .
EYE, 1997, 11 (5) :622-628
[5]   Irregular motion recovery in fluorescein angiograms [J].
Domingo, J ;
Ayala, G ;
Simo, A ;
de Ves, E ;
Martinez-Costa, L ;
Marco, P .
PATTERN RECOGNITION LETTERS, 1997, 18 (08) :805-821
[6]  
ESTABRIDIS K, 2007, P IEEE INT C IM PROC, P445
[7]   Automated microaneurysm detection using local contrast normalization and local vessel detection [J].
Fleming, Alan D. ;
Philip, Sam ;
Goatman, Keith A. ;
Olson, John A. ;
Sharp, Peter F. .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2006, 25 (09) :1223-1232
[8]   A comparison of computer based classification methods applied to the detection of microaneurysms in ophthalmic fluorescein angiograms [J].
Frame, AJ ;
Undrill, PE ;
Cree, MJ ;
Olson, JA ;
McHardy, KC ;
Sharp, PF ;
Forrester, JV .
COMPUTERS IN BIOLOGY AND MEDICINE, 1998, 28 (03) :225-238
[9]   Automatic detection of diabetic retinopathy using an artificial neural network: A screening tool [J].
Gardner, GG ;
Keating, D ;
Williamson, TH ;
Elliott, AT .
BRITISH JOURNAL OF OPHTHALMOLOGY, 1996, 80 (11) :940-944
[10]  
Goldbaum M, 1996, INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, PROCEEDINGS - VOL III, P695, DOI 10.1109/ICIP.1996.560760