Characterization of novel forward osmosis hollow fiber membranes

被引:452
作者
Wang, Rong [1 ,2 ]
Shi, Lei [2 ]
Tang, Chuyang Y. [1 ,2 ]
Chou, Shuren [1 ,2 ]
Qiu, Changquan [1 ]
Fane, Anthony G. [1 ,2 ]
机构
[1] Nanyang Technol Univ, Sch Civil & Environm Engn, Singapore 639798, Singapore
[2] Nanyang Technol Univ, Singapore Membrane Technol Ctr, Singapore 639798, Singapore
关键词
Forward osmosis; Hollow fiber; Thin film composite; Internal concentration polarization; Structural parameter; INTERNAL CONCENTRATION POLARIZATION; PHYSIOCHEMICAL PROPERTIES; SEPARATION PERFORMANCE; MECHANICAL-PROPERTIES; WATER FLUX; LAYER; FABRICATION; MORPHOLOGY; RO;
D O I
10.1016/j.memsci.2010.03.017
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Forward osmosis (FO) has received intensive studies recently for a range of potential applications such as wastewater treatment, water purification and seawater desalination. One of the major challenges to be overcome is the lack of an optimized FO membrane that can produce a high water flux comparable to commercial RO membranes. Two types of thin-film composite FO hollow fibers with an ultra-thin polyamide-based RO-like skin layer (300-600 nm) on either the outer surface (#A-FO) or inner surface (#B-FO) of a porous hollow fiber substrate have been successfully fabricated. These novel composite FO hollow fibers have been characterized by a series of standard protocols and benchmarked against commercially available FO flat sheet membranes and reported NF hollow fibers used for the FO process. The characterization reveals that the FO hollow fiber membranes possess a large lumen. The substrates are highly porous with a narrow pore size distribution. The active layers present excellent intrinsic separation properties with a hydrophilic rejection layer and good mechanical strength. The #B-FO hollow fiber membrane can achieve a high FO water flux of 32.2 L/m(2) h using a 0.5 M NaCl draw solution in the active rejection layer facing draw solution (AL-facing-DS) configuration at 23 degrees C. The corresponding salt flux is only 3.7 g/m(2) h. To the best of our knowledge, the performance of the #B-FO hollow fiber is superior to all FO membranes reported in the open literature. The current study suggests that the optimal FO membrane structure would possess a very small portion of sponge-like layer in a thin and highly porous substrate, which suggests a way for further improvement. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:158 / 167
页数:10
相关论文
共 33 条
[1]   The forward osmosis membrane bioreactor: A low fouling alternative to MBR processes [J].
Achilli, Andrea ;
Cath, Tzahi Y. ;
Marchand, Eric A. ;
Childress, Amy E. .
DESALINATION, 2009, 239 (1-3) :10-21
[2]   Forward osmosis: Principles, applications, and recent developments [J].
Cath, Tzahi Y. ;
Childress, Amy E. ;
Elimelech, Menachem .
JOURNAL OF MEMBRANE SCIENCE, 2006, 281 (1-2) :70-87
[3]   Effect of shear rate within the spinneret on morphology, separation performance and mechanical properties of ultrafiltration polyethersulfone hollow fiber membranes [J].
Chung, TS ;
Qin, JJ ;
Gu, J .
CHEMICAL ENGINEERING SCIENCE, 2000, 55 (06) :1077-1091
[4]   Membrane fouling and process performance of forward osmosis membranes on activated sludge [J].
Cornelissen, E. R. ;
Harmsen, D. ;
de Korte, K. F. ;
Ruiken, C. J. ;
Qin, Jian-Jun ;
Oo, H. ;
Wessels, L. P. .
JOURNAL OF MEMBRANE SCIENCE, 2008, 319 (1-2) :158-168
[5]   Internal concentration polarization in forward osmosis: role of membrane orientation [J].
Gray, Gordon T. ;
McCutcheon, Jeffrey R. ;
Elimelech, Menachem .
DESALINATION, 2006, 197 (1-3) :1-8
[6]   Solute Coupled Diffusion in Osmotically Driven Membrane Processes [J].
Hancock, Nathan T. ;
Cath, Tzahi Y. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2009, 43 (17) :6769-6775
[7]  
Herron JR, 1994, US Patent, Patent No. [5,281,430, 5281430, US005281430, 005281430]
[8]   Forward osmosis for concentration of anaerobic digester centrate [J].
Holloway, Ryan W. ;
Childress, Amy E. ;
Dennett, Keith E. ;
Cath, Tzahi Y. .
WATER RESEARCH, 2007, 41 (17) :4005-4014
[9]   Interfacially polymerized hydrophilic microporous thin film composite membranes on porous polypropylene hollow fibers and flat films [J].
Korikov, A. R. ;
Kosaraju, P. B. ;
Sirkar, K. K. .
JOURNAL OF MEMBRANE SCIENCE, 2006, 279 (1-2) :588-600
[10]   MEMBRANES FOR POWER-GENERATION BY PRESSURE-RETARDED OSMOSIS [J].
LEE, KL ;
BAKER, RW ;
LONSDALE, HK .
JOURNAL OF MEMBRANE SCIENCE, 1981, 8 (02) :141-171