Impact Ionization and Auger Recombination Rates in Semiconductor Quantum Dots

被引:25
作者
Fu, Y. [1 ,2 ]
Zhou, Y. -H. [1 ]
Su, Haibin [1 ]
Boey, F. Y. C. [1 ]
Agren, H. [1 ,2 ]
机构
[1] Nanyang Technol Univ, Div Mat Sci, Singapore, Singapore
[2] Royal Inst Technol, Sch Biotechnol, Dept Theoret Chem, S-10691 Stockholm, Sweden
关键词
CARRIER MULTIPLICATION; EFFICIENCY; EXCITONS;
D O I
10.1021/jp9082486
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Impact ionization and Auger recombination in nanoscale spherical quantum dots (QDs) have been Studied theoretically. It is shown that due to the strong quantum confinement of both electrons in the conduction band and holes ill the valence band. impact ionization and Auger recombination energies in these QDs call be oil the order of a few millielectronvolts when various selection rules are fulfilled, which are Much higher than spontaneous radiative emission energies. This explains the experimentally reported high Occurrence rates of the multiple exciton generation (MEG) effect in QDs. However, due to quantum confinement, the energy States are discrete in QDs, especially for low-energy states where the densities of states are low. This implies that only a limited number of high-energy electron states call interact with (i.e., impact ionize) low-energy hole states in QDs having certain values of radii due to the energy conservation requirement. This explains the vastly scattered experimental data and difficulties ill Utilizing the MEG effect in practice.
引用
收藏
页码:3743 / 3747
页数:5
相关论文
共 21 条
[1]   Influence of electronic structure and multiexciton spectral density on multiple-exciton generation in semiconductor nanocrystals: Tight-binding calculations [J].
Allan, G. ;
Delerue, C. .
PHYSICAL REVIEW B, 2008, 77 (12)
[2]  
[Anonymous], 1992, DATA SCI TECHNOLOGY
[3]  
COHENTANNOUDJI C, 1991, QUANTUM MECH, V2, P1046
[4]   Impact ionization can explain carrier multiplication in PbSe quantum dots [J].
Franceschetti, A. ;
An, J. M. ;
Zunger, A. .
NANO LETTERS, 2006, 6 (10) :2191-2195
[5]   Design of semiconductor CdSe core ZnS/CdS multishell quantum dots for multiphoton applications [J].
Fu, Y. ;
Han, T.-T. ;
Agren, H. ;
Lin, L. ;
Chen, P. ;
Liu, Y. ;
Tang, G.-Q. ;
Wu, J. ;
Yue, Y. ;
Dai, N. .
APPLIED PHYSICS LETTERS, 2007, 90 (17)
[6]   Photoluminescence of an assembly of size-distributed self-assembled InAs quantum dots [J].
Fu, Y ;
Ferdos, F ;
Sadeghi, M ;
Wang, SM ;
Larsson, A .
JOURNAL OF APPLIED PHYSICS, 2002, 92 (06) :3089-3092
[7]   Radiative and nonradiative recombination of photoexcited excitons in multi-shell-coated CdSe/CdS/ZnS quantum dots [J].
Fu, Y. ;
Agren, H. ;
Kowalewski, J. M. ;
Brismar, H. ;
Wu, J. ;
Yue, Y. ;
Dai, N. ;
Thylen, L. .
EPL, 2009, 86 (03)
[8]  
HANNA M, 2004, 2004 DOE SOL EN TECH
[9]   Optimising uniformity of InAs/(InGaAs)/GaAs quantum dots grown by metal organic vapor phase epitaxy [J].
Höglund, L ;
Petrini, E ;
Asplund, C ;
Malm, H ;
Andersson, JY ;
Holtz, PO .
APPLIED SURFACE SCIENCE, 2006, 252 (15) :5525-5529
[10]   Auger recombination and state filling of resonantly excited ground state in CdSe quantum dots [J].
Kim, J. H. ;
Kyhm, K. ;
Kim, S. M. ;
Yang, Ho-Soon .
JOURNAL OF APPLIED PHYSICS, 2007, 101 (10)