Adult mesenchymal stem cells: characterization, differentiation, and application in cell and gene therapy

被引:816
作者
Baksh, D [1 ]
Song, L [1 ]
Tuan, RS [1 ]
机构
[1] NIAMSD, Cartilage Biol & Orthopaed Branch, NIH, Dept Hlth & Human Serv, Bethesda, MD 20892 USA
关键词
mesenchymal stem cells; stem cell niche; differentiation; Wnt; gene therapy;
D O I
10.1111/j.1582-4934.2004.tb00320.x
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
A considerable amount of retrospective data is available that describes putative mesenchyrnal stem cells (MSCs). However, there is still very little knowledge available that documents the properties of a MSC in its native environment. Although the precise identity of MSCs remains a challenge, further understanding of their biological properties will be greatly advanced by analyzing the mechanisms that govern their self-renewal and differentiation potential. This review begins with the current state of knowledge on the biology of MSCs, specifically with respect to their existence in the adult organism and postulation of their biological niche. While MSCs are considered suitable candidates for cell-based strategies owing to their intrinsic capacity to self-renew and differentiate, there is currently little information available regarding the molecular mechanisms that govern their stem cell potential. We propose here a model for the regulation of MSC differentiation, and recent findings regarding the regulation of MSC differentiation are discussed. Current research efforts focused on elucidating the mechanisms regulating MSC differentiation should facilitate the design of optimal in vitro culture conditions to enhance their clinical utility cell and gene therapy.
引用
收藏
页码:301 / 316
页数:16
相关论文
共 106 条
  • [1] Allogeneic mesenchymal stem cells regenerate bone in a critical-sized canine segmental defect
    Arinzeh, TL
    Peter, SJ
    Archambault, MP
    van den Bos, C
    Gordon, S
    Kraus, K
    Smith, A
    Kadiyala, S
    [J]. JOURNAL OF BONE AND JOINT SURGERY-AMERICAN VOLUME, 2003, 85A (10) : 1927 - 1935
  • [2] Autologous mesenchymal stem cell-mediated repair of tendon
    Awad, HA
    Butler, DL
    Boivin, GP
    Smith, FNL
    Malaviya, P
    Huibregtse, B
    Caplan, AI
    [J]. TISSUE ENGINEERING, 1999, 5 (03): : 267 - 277
  • [3] Adult human bone marrow-derived mesenchymal progenitor cells are capable of adhesion-independent survival and expansion
    Baksh, D
    Davies, JE
    Zandstra, PW
    [J]. EXPERIMENTAL HEMATOLOGY, 2003, 31 (08) : 723 - 732
  • [4] Barry Frank P, 2003, Novartis Found Symp, V249, P86
  • [5] Ex vivo enrichment of mesenchymal cell progenitors by fibroblast growth factor 2
    Bianchi, G
    Banfi, A
    Mastrogiacomo, M
    Notaro, R
    Luzzatto, L
    Cancedda, R
    Quarto, R
    [J]. EXPERIMENTAL CELL RESEARCH, 2003, 287 (01) : 98 - 105
  • [6] Bone marrow stromal stem cells: Nature, biology, and potential applications
    Bianco, P
    Riminucci, M
    Gronthos, S
    Robey, PG
    [J]. STEM CELLS, 2001, 19 (03) : 180 - 192
  • [7] Marrow stromal stem cells
    Bianco, P
    Robey, PG
    [J]. JOURNAL OF CLINICAL INVESTIGATION, 2000, 105 (12) : 1663 - 1668
  • [8] BOLAND GM, 2004, IN PRESS J CELL BIOC
  • [9] Bruder SP, 1997, J CELL BIOCHEM, V64, P278, DOI 10.1002/(SICI)1097-4644(199702)64:2<278::AID-JCB11>3.0.CO
  • [10] 2-F