Directly monitoring the growth of gold nanoparticle seeds into gold nanorods

被引:80
作者
Wei, ZQ [1 ]
Zamborini, FP [1 ]
机构
[1] Univ Louisville, Dept Chem, Louisville, KY 40292 USA
关键词
D O I
10.1021/la047408k
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This paper describes the use of atomic force microscopy to directly image surface-attached 3-5 nm diameter gold nanoparticle seeds before and after seed-mediated growth into gold nanorods (Au NRs) and other shapes (spheres, triangles, and hexagons). Results show that An NRs form from seeds growing in either one or two directions. A direct correlation exists between seed diameter and NR diameter; small diameter seeds form small diameter NRs. However, correlation between seed diameter and nanostructure shape or NR length is less evident. We describe our results in terms of growth mechanisms proposed in the literature and discuss possible reasons for the large size dispersity observed for surface-grown Au NRs. A better understanding of Au NR and other metal and semiconductor one-dimensional (1D) growth processes is necessary to improve synthesis, tailor their properties, and utilize 1D nanostructures for useful technological applications.
引用
收藏
页码:11301 / 11304
页数:4
相关论文
共 17 条
[1]   Surface atomic defect structures and growth of gold nanorods [J].
Gai, PL ;
Harmer, MA .
NANO LETTERS, 2002, 2 (07) :771-774
[2]   Seed-mediated synthesis of gold nanorods: Role of the size and nature of the seed [J].
Gole, A ;
Murphy, CJ .
CHEMISTRY OF MATERIALS, 2004, 16 (19) :3633-3640
[3]  
Jana NR, 2001, ADV MATER, V13, P1389, DOI 10.1002/1521-4095(200109)13:18<1389::AID-ADMA1389>3.0.CO
[4]  
2-F
[5]   Wet chemical synthesis of high aspect ratio cylindrical gold nanorods [J].
Jana, NR ;
Gearheart, L ;
Murphy, CJ .
JOURNAL OF PHYSICAL CHEMISTRY B, 2001, 105 (19) :4065-4067
[6]   Growth and form of gold nanorods prepared by seed-mediated, surfactant-directed synthesis [J].
Johnson, CJ ;
Dujardin, E ;
Davis, SA ;
Murphy, CJ ;
Mann, S .
JOURNAL OF MATERIALS CHEMISTRY, 2002, 12 (06) :1765-1770
[7]   How does a gold nanorod melt? [J].
Link, S ;
Wang, ZL ;
El-Sayed, MA .
JOURNAL OF PHYSICAL CHEMISTRY B, 2000, 104 (33) :7867-7870
[8]   Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides [J].
Maier, SA ;
Kik, PG ;
Atwater, HA ;
Meltzer, S ;
Harel, E ;
Koel, BE ;
Requicha, AAG .
NATURE MATERIALS, 2003, 2 (04) :229-232
[9]   The 'lightning' gold nanorods: fluorescence enhancement of over a million compared to the gold metal [J].
Mohamed, MB ;
Volkov, V ;
Link, S ;
El-Sayed, MA .
CHEMICAL PHYSICS LETTERS, 2000, 317 (06) :517-523
[10]  
Nikoobakht B, 2003, CHEM MATER, V15, P1957, DOI [10.1021/cm020732l, 10.1021/cm0207321]