In vivo functional analysis of the human mitochondrial DNA polymerase POLG expressed in cultured human cells

被引:158
作者
Spelbrink, JN
Toivonen, JM
Hakkaart, GAJ
Kurkela, JM
Cooper, HM
Lehtinen, SK
Lecrenier, N
Back, JW
Speijer, D
Foury, F
Jacobs, HT
机构
[1] Tampere Univ, Inst Med Technol, FIN-33101 Tampere, Finland
[2] Tampere Univ Hosp, FIN-33101 Tampere, Finland
[3] Univ Catholique Louvain, Unite Biochim Physiol, B-1348 Louvain La Neuve, Belgium
[4] Univ Amsterdam, EC Slater Inst, NL-1018 TV Amsterdam, Netherlands
[5] Univ Glasgow, Inst Biomed & Life Sci, Glasgow G12 8QQ, Lanark, Scotland
关键词
D O I
10.1074/jbc.M000559200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The human gene POLG encodes the catalytic subunit of mitochondrial DNA polymerase, but its precise roles in mtDNA metabolism in Dice have not hitherto been documented. By expressing POLG fusion proteins in cultured human cells, we show that the enzyme is targeted to mitochondria, where the Myc epitope-tagged POLG is catalytically active as a DNA polymerase. Long-term culture of cells expressing wild-type POLG-myc revealed no alterations in mitochondrial function. Expression of POLG-myc mutants created dominant phenotypes demonstrating important roles for the protein in mtDNA maintenance and integrity. The D198A amino acid replacement abolished detectable 3'-5' (proofreading) exonuclease activity and led to the accumulation of a significant load (1:1700) of mtDNA point mutations during 3 months of continuous culture. Further culture resulted in the selection of cells with an inactivated mutator polymerase, and a reduced mutation load in mtDNA Transient expression of POLG-myc variants D890N or D1135A inhibited endogenous mitochondrial DNA polymerase activity and caused mtDNA depletion. Deletion of the POLG CAG repeat did not affect enzymatic properties, but modestly up-regulated expression. These findings demonstrate that POLG exonuclease and polymerase functions are essential for faithful mtDNA maintenance in vivo, and indicate the importance of key residues for these activities.
引用
收藏
页码:24818 / 24828
页数:11
相关论文
共 57 条
[1]   SEQUENCE AND ORGANIZATION OF THE HUMAN MITOCHONDRIAL GENOME [J].
ANDERSON, S ;
BANKIER, AT ;
BARRELL, BG ;
DEBRUIJN, MHL ;
COULSON, AR ;
DROUIN, J ;
EPERON, IC ;
NIERLICH, DP ;
ROE, BA ;
SANGER, F ;
SCHREIER, PH ;
SMITH, AJH ;
STADEN, R ;
YOUNG, IG .
NATURE, 1981, 290 (5806) :457-465
[2]   Fidelity and mutational spectrum of Pfu DNA polymerase on a human mitochondrial DNA sequence [J].
Andre, P ;
Kim, A ;
Khrapko, K ;
Thilly, WG .
GENOME RESEARCH, 1997, 7 (08) :843-852
[3]   Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA [J].
Andrews, RM ;
Kubacka, I ;
Chinnery, PF ;
Lightowlers, RN ;
Turnbull, DM ;
Howell, N .
NATURE GENETICS, 1999, 23 (02) :147-147
[4]   Yeast mitochondrial F1F0-ATP synthase exists as a dimer:: identification of three dimer-specific subunits [J].
Arnold, I ;
Pfeiffer, K ;
Neupert, W ;
Stuart, RA ;
Schägger, H .
EMBO JOURNAL, 1998, 17 (24) :7170-7178
[5]   A CONSERVED 3'-]5' EXONUCLEASE ACTIVE-SITE IN PROKARYOTIC AND EUKARYOTIC DNA-POLYMERASES [J].
BERNAD, A ;
BLANCO, L ;
LAZARO, JM ;
MARTIN, G ;
SALAS, M .
CELL, 1989, 59 (01) :219-228
[6]   MIP1 DNA-POLYMERASE OF SACCHAROMYCES-CEREVISIAE - STRUCTURAL SIMILARITY WITH THE ESCHERICHIA-COLI DNA POLYMERASE-I-TYPE ENZYMES [J].
BLANCO, L ;
BERNAD, A ;
SALAS, M .
NUCLEIC ACIDS RESEARCH, 1991, 19 (04) :955-956
[7]  
Carrodeguas JA, 1999, MOL CELL BIOL, V19, P4039
[8]   REPLICATION OF ANIMAL MITOCHONDRIAL-DNA [J].
CLAYTON, DA .
CELL, 1982, 28 (04) :693-705
[9]   Complex I deficiency is associated with 3243G:C mitochondrial DNA in osteosarcoma cell cybrids [J].
Dunbar, DR ;
Moonie, PA ;
Zeviani, M ;
Holt, IJ .
HUMAN MOLECULAR GENETICS, 1996, 5 (01) :123-129
[10]  
El Meziane A, 1998, NAT GENET, V18, P350