Mechanisms of yeast stress tolerance and its manipulation for efficient fuel ethanol production

被引:184
作者
Zhao, X. Q. [1 ]
Bai, F. W. [1 ]
机构
[1] Dalian Univ Technol, Dept Biosci & Bioengn, Dalian 116024, Peoples R China
基金
中国国家自然科学基金;
关键词
Saccharomyces cerevisiae; Stress tolerance; Ethanol fermentation; SELF-FLOCCULATING YEAST; GENE-EXPRESSION PROFILES; IMPROVED ACID TOLERANCE; GAMMA-GLUTAMYL KINASE; FED-BATCH PROCESS; SACCHAROMYCES-CEREVISIAE; HIGH-GRAVITY; WINE YEAST; ALCOHOLIC FERMENTATION; PLASMA-MEMBRANE;
D O I
10.1016/j.jbiotec.2009.05.001
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Yeast strains of Saccharomyces cerevisiae have been extensively studied in recent years for fuel ethanol production, in which yeast cells are exposed to various stresses such as high temperature, ethanol inhibition, and osmotic pressure from product and substrate sugars as well as the inhibitory substances released from the pretreatment of lignocellulosic biomass. An in-depth understanding of the mechanism of yeast stress tolerance contributes to breeding more robust strains for ethanol production, especially under very high gravity conditions. Taking advantage of the "omics" technology, the stress response and defense mechanism of yeast cells during ethanol fermentation were further explored, and the newly emerged tools such as genome shuffling and global transcription machinery engineering have been applied to breed stress resistant yeast strains for ethanol production. In this review, the latest development of stress tolerance mechanisms was focused, and improvement of yeast stress tolerance by both random and rational tools was presented. (C) 2009 Elsevier B.V. All rights reserved
引用
收藏
页码:23 / 30
页数:8
相关论文
共 92 条
[1]   Relationship between ethanol tolerance, H+-ATPase activity and the lipid composition of the plasma membrane in different wine yeast strains [J].
Aguilera, F. ;
Peinado, R. A. ;
Millan, C. ;
Ortega, J. M. ;
Mauricio, J. C. .
INTERNATIONAL JOURNAL OF FOOD MICROBIOLOGY, 2006, 110 (01) :34-42
[2]   Global gene expression during short-term ethanol stress in Saccharomyces cerevisiae [J].
Alexandre, H ;
Ansanay-Galeote, V ;
Dequin, S ;
Blondin, B .
FEBS LETTERS, 2001, 498 (01) :98-103
[3]   Aeration strategy:: a need for very high ethanol performance in Saccharomyces cerevisiae fed-batch process [J].
Alfenore, S ;
Cameleyre, X ;
Benbadis, L ;
Bideaux, C ;
Uribelarrea, JL ;
Goma, G ;
Molina-Jouve, C ;
Guillouet, SE .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2004, 63 (05) :537-542
[4]   Improving ethanol production and viability of Saccharomyces cerevisiae by a vitamin feeding strategy during fed-batch process [J].
Alfenore, S ;
Molina-Jouve, C ;
Guillouet, SE ;
Uribelarrea, JL ;
Goma, G ;
Benbadis, L .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2002, 60 (1-2) :67-72
[5]   Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae [J].
Almeida, Jodo R. M. ;
Modig, Tobias ;
Petersson, Anneli ;
Hahn-Hagerdal, Barbel ;
Liden, Gunnar ;
Gorwa-Grauslund, Marie F. .
JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY, 2007, 82 (04) :340-349
[6]   Engineering yeast transcription machinery for improved ethanol tolerance and production [J].
Alper, Hal ;
Moxley, Joel ;
Nevoigt, Elke ;
Fink, Gerald R. ;
Stephanopoulos, Gregory .
SCIENCE, 2006, 314 (5805) :1565-1568
[7]   Stress tolerance: The key to effective strains of industrial baker's yeast [J].
Attfield, PV .
NATURE BIOTECHNOLOGY, 1997, 15 (13) :1351-1357
[8]   Ethanol fermentation technologies from sugar and starch feedstocks [J].
Bai, F. W. ;
Anderson, W. A. ;
Moo-Young, M. .
BIOTECHNOLOGY ADVANCES, 2008, 26 (01) :89-105
[9]   Continuous ethanol production and evaluation of yeast cell lysis and viability loss under very high gravity medium conditions [J].
Bai, FW ;
Chen, LJ ;
Zhang, Z ;
Anderson, WA ;
Moo-Young, M .
JOURNAL OF BIOTECHNOLOGY, 2004, 110 (03) :287-293
[10]   Stress-activated Genomic Expression Changes Serve a Preparative Role for Impending Stress in Yeast [J].
Berry, David B. ;
Gasch, Audrey P. .
MOLECULAR BIOLOGY OF THE CELL, 2008, 19 (11) :4580-4587