Specific adsorption behavior of water on a Y2O3 surface

被引:66
作者
Kuroda, Y [1 ]
Hamano, H
Mori, T
Yoshikawa, Y
Nagao, M
机构
[1] Okayama Univ, Fac Sci, Dept Chem, Okayama 7008530, Japan
[2] Okayama Univ, Fac Sci, Surface Sci Res Lab, Okayama 7008530, Japan
关键词
D O I
10.1021/la9917031
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
It was found that in the adsorption isotherms of water on Y2O3 at 298 K a break occurs at around a relative pressure of 0.007, giving rise to a decrease in the vapor pressure and a continuous increase in the adsorbed amount. The water content of the Y2O3 sample was found to be about 100 H2O molecules nm(-2), being much larger than that calculated on the basis of crystallographic structure as well as the values obtained experimentally for the typical metal oxides. To clarify this, the adsorbed state of water on the Y2O3 sample was examined by means of near-infrared (NIR) spectroscopy, temperature-programmed desorption (TPD), X-ray absorption fine structure (XAFS), and dielectric measurements. For the hydrated Y2O3 sample three desorption peaks were observed at around 370, 420, and 650 K in the TPD spectra, suggesting the presence of three types of adsorbed water. These are supposed to give the bands at 6750, 7110, and 7250 cm(-1) in the NIR spectra; the former two bands are due to the molecular water, i.e., strongly adsorbed water and hydrated bulk species, and the last one to the surface hydroxyl groups (overtone of stretching vibration). Dielectric relaxation of water physisorbed on the Y2O3 surface (coverage of 1.64) was observed at 24.5 kHz and at 158 K. It should be stressed that a new dielectric relaxation is found at around 40 Hz and at 273 K, corresponding to a dipolar relaxation due to the strongly physisorbed water molecule. From these experimental results, it has become apparent that water molecules are strongly adsorbed on Y2O3 and react with bulk oxide layers to form hydroxide layers. Such a process is summarized as follows: Y2O3 + physisorbed water --> Y2O3 . H2O (strongly adsorbed on the surface layer) --> Y2O3(H2O bulk species) or YOOH --> Y(OH)(3). This sequential hydration mechanism was also supported by the XAFS data. The reaction with water appears to be limited to such a extent that it proceeds by the heat resulting from a reaction of Y2O3 with water, and hence the intermediate state of the strongly adsorbed water could be recognized in this system. It is the first example detected successfully that the molecular water is strongly adsorbed on the surface layer of Y2O3. The hydration process of Y2O3 can be interpreted by the concept of electronegativity of yttrium ion, Y3+; the Y2O3 sample possesses a basic proper ty, in harmony with the evidence obtained from the point-of-zero charge (PZC) value as well as the Ols XPS data of the sample.
引用
收藏
页码:6937 / 6947
页数:11
相关论文
共 46 条
[1]   The binary rare earth oxides [J].
Adachi, G ;
Imanaka, N .
CHEMICAL REVIEWS, 1998, 98 (04) :1479-1514
[2]  
Adachi G., 1999, SCI RARE EARTHS
[3]   DIELECTRIC PROPERTIES OF ICE AND SOLID D2O [J].
AUTY, RP ;
COLE, RH .
JOURNAL OF CHEMICAL PHYSICS, 1952, 20 (08) :1309-1314
[4]   ESCA STUDY OF TERMINATION OF PASSIVATION OF ELEMENTAL METALS [J].
BARR, TL .
JOURNAL OF PHYSICAL CHEMISTRY, 1978, 82 (16) :1801-1810
[5]   BONDING AND ELECTRONIC-STRUCTURE IN HIGH-TC SUPERCONDUCTING OXIDES - A CASE FOR THE IMPORTANCE OF THE CATIONS [J].
BARR, TL ;
BRUNDLE, CR .
PHYSICAL REVIEW B, 1992, 46 (14) :9199-9204
[6]   POSSIBLE HIGH-TC SUPERCONDUCTIVITY IN THE BA-LA-CU-O SYSTEM [J].
BEDNORZ, JG ;
MULLER, KA .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1986, 64 (02) :189-193
[7]   BEHAVIOR OF RARE-EARTH SESQUIOXIDES EXPOSED TO ATMOSPHERIC CARBON-DIOXIDE AND WATER [J].
BERNAL, S ;
BOTANA, FJ ;
GARCIA, R ;
RODRIGUEZIZQUIERDO, JM .
REACTIVITY OF SOLIDS, 1987, 4 (1-2) :23-40
[8]   THE DIELECTRIC-RELAXATION TIME OF SUPERCOOLED WATER [J].
BERTOLINI, D ;
CASSETTARI, M ;
SALVETTI, G .
JOURNAL OF CHEMICAL PHYSICS, 1982, 76 (06) :3285-3290
[9]  
BRIGGS D, 1994, PRACTICAL SURFACE AN, P412
[10]   Porous silica-water interactions .1. Structural and dimensional changes induced by water adsorption [J].
Burneau, A ;
Lepage, J ;
Maurice, G .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 1997, 217 (01) :1-10