Self-organisation and forces in the microtubule cytoskeleton

被引:105
作者
Nédélec, F [1 ]
Surrey, T [1 ]
Karsenti, E [1 ]
机构
[1] European Mol Biol Lab, Cell Biol & Biophys Programme, D-69117 Heidelberg, Germany
关键词
D O I
10.1016/S0955-0674(02)00014-5
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Modern microscopy techniques allow us to observe specifically tagged proteins in live cells. We can now see directly that many cellular structures, for example mitotic spindles, are in fact dynamic assemblies. Their apparent stability results from out-of-equilibrium stochastic interactions at the molecular level. Recent studies have shown that the spindles can form even after centrosomes are destroyed, and that they can even form around DNA-coated beads devoid of kinetochores. Moreover, conditions have been produced in which microtubule asters interact even in the absence of chromatin. Together, these observations suggest that the spindle can be experimentally deconstructed, and that its defining characteristics can be studied in a simplified context, in the absence of the full division machinery.
引用
收藏
页码:118 / 124
页数:7
相关论文
共 61 条
[1]   HOW DOES TAXOL STABILIZE MICROTUBULES [J].
ARNAL, I ;
WADE, RH .
CURRENT BIOLOGY, 1995, 5 (08) :900-908
[2]   Bipolar meiotic spindle formation without chromatin [J].
Brunet, S ;
Polanski, Z ;
Verlhac, MH ;
Kubiak, JZ ;
Maro, B .
CURRENT BIOLOGY, 1998, 8 (22) :1231-1234
[3]  
Camazine S., 2001, SELF ORG BIOL SYSTEM
[4]   Generation of GTP-bound Ran by RCC1 is required for chromatin-induced mitotic spindle formation [J].
Carazo-Salas, RE ;
Guarguaglini, G ;
Gruss, OJ ;
Segref, A ;
Karsenti, E ;
Mattaj, IW .
NATURE, 1999, 400 (6740) :178-181
[5]   Ran-GTP coordinates regulation of microtubule nucleation and dynamics during mitotic-spindle assembly [J].
Carazo-Salas, RE ;
Gruss, OJ ;
Mattaj, IW ;
Karsenti, E .
NATURE CELL BIOLOGY, 2001, 3 (03) :228-234
[6]   STRUCTURE OF GROWING MICROTUBULE ENDS - 2-DIMENSIONAL SHEETS CLOSE INTO TUBES AT VARIABLE RATES [J].
CHRETIEN, D ;
FULLER, SD ;
KARSENTI, E .
JOURNAL OF CELL BIOLOGY, 1995, 129 (05) :1311-1328
[7]   Spindle assembly in animal cells [J].
Compton, DA .
ANNUAL REVIEW OF BIOCHEMISTRY, 2000, 69 :95-114
[8]   PATTERN-FORMATION OUTSIDE OF EQUILIBRIUM [J].
CROSS, MC ;
HOHENBERG, PC .
REVIEWS OF MODERN PHYSICS, 1993, 65 (03) :851-1112
[9]   Microtubule polymerization dynamics [J].
Desai, A ;
Mitchison, TJ .
ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, 1997, 13 :83-117
[10]   Anaphase A chromosome movement and poleward spindle microtubule flux occur at similar rates in Xenopus extract spindles [J].
Desai, A ;
Maddox, PS ;
Mitchison, TJ ;
Salmon, ED .
JOURNAL OF CELL BIOLOGY, 1998, 141 (03) :703-713