O(N2 log2 N) filtered backprojection reconstruction algorithm for tomography

被引:135
作者
Basu, S [1 ]
Bresler, Y
机构
[1] GE, Ctr Corp Res & Dev, Niskayuna, NY 12309 USA
[2] Univ Illinois, Coordinated Sci Lab, Urbana, IL 61801 USA
[3] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
fast algorithm; fast reconstruction; filtered backprojection; hierarchical; tomography;
D O I
10.1109/83.869187
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a new fast reconstruction algorithm for parallel beam tomography, The new algorithm is an accelerated version of the standard filtered backprojection (FBP) reconstruction, and uses a hierarchical decomposition of the backprojection operation to reduce the computational cost from O(N-3) to O(N-2 log, N), We discuss the choice of the various parameters that affect the behavior of the algorithm, and present numerical studies that demonstrate the cost versus distortion tradeoff. Comparisons with Fourier reconstruction algorithms and a recent multilevel inversion algorithm by Brandt ed al,, both of which also have O(N2 log, N) cost, suggest that the proposed hierarchical scheme has a superior cost versus distortion performance. It offers rms reconstruction errors comparable to the FBP with considerable speedup. For an example with a 512 x 512-pixel image and 1024 views, the speedup achieved with a particular implementation is over 40 fold, with reconstructions visually indistinguishable from the FBP.
引用
收藏
页码:1760 / 1773
页数:14
相关论文
共 25 条
[1]   AN IMAGE-PROCESSING IC FOR BACKPROJECTION AND SPATIAL HISTOGRAMMING IN A PIPELINED ARRAY [J].
AGI, I ;
HURST, PJ ;
CURRENT, KW .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 1993, 28 (03) :210-221
[2]  
BOAG A, IN PRESS IEEE T IMAG
[3]   A fast discrete approximation algorithm for the Radon transform [J].
Brady, ML .
SIAM JOURNAL ON COMPUTING, 1998, 27 (01) :107-119
[4]   Fast calculation of multiple line integrals [J].
Brandt, A ;
Dym, J .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1999, 20 (04) :1417-1429
[5]  
BRANDT A, IN PRESS SIAM J APPL
[6]  
Deans S., 1983, RADON TRANSFORM SOME
[7]   IMAGE-RECONSTRUCTION FROM LINOGRAMS - IMPLEMENTATION AND EVALUATION [J].
EDHOLM, P ;
HERMAN, GT ;
ROBERTS, DA .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 1988, 7 (03) :239-246
[8]  
Herman G T, 1979, IMAGE RECONSTRUCTION
[9]  
Jain AK., 1989, Fundamentals of Digital Image Processing
[10]  
Kak A.C. Slaney M., 1999, PRINCIPLES COMPUTERI