An analysis of core deformations in protein superfamilies

被引:95
作者
Leo-Macias, A
Lopez-Romero, P
Lupyan, D
Zerbino, D
Ortiz, AR [1 ]
机构
[1] CSIC UAM, Ctr Biol Mol Severo Ochoa, Bioinformat Unit, Madrid, Spain
[2] Mt Sinai Sch Med, Dept Physiol & Biophys, New York, NY USA
关键词
D O I
10.1529/biophysj.104.052449
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
An analysis is presented on how structural cores modify their shape across homologous proteins, and whether or not a relationship exists between these structural changes and the vibrational normal modes that proteins experience as a result of the topological constraints imposed by the fold. A set of 35 representative, well-populated protein families is studied. The evolutionary directions of deformation are obtained by using multiple structural alignments to superimpose the structures and extract a conserved core, together with principal components analysis to extract the main deformation modes from the three-dimensional superimposition. In parallel, a low-resolution normal mode analysis technique is employed to study the properties of the mechanical core plasticity of these same families. We show that the evolutionary deformations span a low dimensional space of 4 - 5 dimensions on average. A statistically significant correspondence exists between these principal deformations and the similar to20 slowest vibrational modes accessible to a particular topology. We conclude that, to a significant extent, the structural response of a protein topology to sequence changes takes place by means of collective deformations along combinations of a small number of low-frequency modes. The findings have implications in structure prediction by homology modeling.
引用
收藏
页码:1291 / 1299
页数:9
相关论文
共 42 条
[1]  
Amadei A, 1999, PROTEINS, V36, P419, DOI 10.1002/(SICI)1097-0134(19990901)36:4<419::AID-PROT5>3.0.CO
[2]  
2-U
[3]  
[Anonymous], 1999, APPL MULTIVARIATE AN
[4]   Anisotropy of fluctuation dynamics of proteins with an elastic network model [J].
Atilgan, AR ;
Durell, SR ;
Jernigan, RL ;
Demirel, MC ;
Keskin, O ;
Bahar, I .
BIOPHYSICAL JOURNAL, 2001, 80 (01) :505-515
[5]   Direct evaluation of thermal fluctuations in proteins using a single-parameter harmonic potential [J].
Bahar, I ;
Atilgan, AR ;
Erman, B .
FOLDING & DESIGN, 1997, 2 (03) :173-181
[6]   Protein structure prediction and structural genomics [J].
Baker, D ;
Sali, A .
SCIENCE, 2001, 294 (5540) :93-96
[7]   Collective protein dynamics in relation to function [J].
Berendsen, HJC ;
Hayward, S .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2000, 10 (02) :165-169
[8]   The ASTRAL compendium for protein structure and sequence analysis [J].
Brenner, SE ;
Koehl, P ;
Levitt, R .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :254-256
[9]  
de Groot BL, 1998, PROTEINS, V31, P116, DOI 10.1002/(SICI)1097-0134(19980501)31:2<116::AID-PROT2>3.0.CO
[10]  
2-K