Mutagenesis of plants overexpressing CONSTANS demonstrates novel interactions among Arabidopsis flowering-time genes

被引:327
作者
Onouchi, H [1 ]
Igeño, MI [1 ]
Périlleux, C [1 ]
Graves, K [1 ]
Coupland, G [1 ]
机构
[1] John Innes Ctr Plant Sci Res, Norwich NR4 7UH, Norfolk, England
关键词
D O I
10.1105/tpc.12.6.885
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
CONSTANS (CO) promotes flowering of Arabidopsis in response to long photoperiods. Transgenic plants carrying CO fused with the cauliflower mosaic virus 35S promoter (35S::CO) flowered earlier than did the wild type and were almost completely insensitive to length of day. Genes required for CO to promote flowering were identified by screening for mutations that suppress the effect of 35S::CO. Four mutations were identified that partially suppressed the early-flowering phenotype caused by 35S::CO. One of these mutations, suppressor of overexpression of CO 1 (soc1), defines a new locus, demonstrating that the mutagenesis approach is effective in identifying novel flowering-time mutations. The other three suppressor mutations are allelic with previously described mutations that cause late flowering. Two of them are alleles of ft, indicating that FT is required for CO to promote early flowering and most likely acts after CO in the hierarchy of flowering-time genes. The fourth suppressor mutation is an allele of fwa, and fwa soc1 35S::CO plants flowered at approximately the same time as co mutants, suggesting that a combination of fwa and soc1 abolishes the promotion of flowering by CO. Besides delaying flowering, fwa acted synergistically with 35S::CO to repress floral development after bolting. The latter phenotype was not shown by any of the progenitors and was most probably caused by a reduction in the function of LEAFY. These genetic interactions suggest models for how CO, FWA, FT, and SOC1 interact during the transition to flowering.
引用
收藏
页码:885 / 900
页数:16
相关论文
共 48 条
  • [1] ASSIGNMENT OF 30 MICROSATELLITE LOCI TO THE LINKAGE MAP OF ARABIDOPSIS
    BELL, CJ
    ECKER, JR
    [J]. GENOMICS, 1994, 19 (01) : 137 - 144
  • [2] Gibberellins promote flowering of Arabidopsis by activating the LEAFY promoter
    Blázquez, MA
    Green, R
    Nilsson, O
    Sussman, MR
    Weigel, D
    [J]. PLANT CELL, 1998, 10 (05) : 791 - 800
  • [3] Inflorescence commitment and architecture in Arabidopsis
    Bradley, D
    Ratcliffe, O
    Vincent, C
    Carpenter, R
    Coen, E
    [J]. SCIENCE, 1997, 275 (5296) : 80 - 83
  • [4] Differential regulation of trichome formation on the adaxial and abaxial leaf surfaces by Gibberellins and photoperiod in Arabidopsis thaliana (L) Heynh
    Chien, JC
    Sussex, IM
    [J]. PLANT PHYSIOLOGY, 1996, 111 (04) : 1321 - 1328
  • [5] GIGANTEA:: a circadian clock-controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains
    Fowler, S
    Lee, K
    Onouchi, H
    Samach, A
    Richardson, K
    Coupland, G
    Putterill, J
    [J]. EMBO JOURNAL, 1999, 18 (17) : 4679 - 4688
  • [6] Regulations of flowering time by Arabidopsis photoreceptors
    Guo, HW
    Yang, WY
    Mockler, TC
    Lin, CT
    [J]. SCIENCE, 1998, 279 (5355) : 1360 - 1363
  • [7] Hypermethylated SUPERMAN epigenetic alleles in Arabidopsis
    Jacobsen, SE
    Meyerowitz, EM
    [J]. SCIENCE, 1997, 277 (5329) : 1100 - 1103
  • [8] Jones Jonathan D. G., 1992, Transgenic Research, V1, P285, DOI 10.1007/BF02525170
  • [9] Genetic characterization of late-flowering traits induced by DNA hypomethylation mutation in Arabidopsis thaliana
    Kakutani, T
    [J]. PLANT JOURNAL, 1997, 12 (06) : 1447 - 1451
  • [10] Activation tagging of the floral inducer FT
    Kardailsky, I
    Shukla, VK
    Ahn, JH
    Dagenais, N
    Christensen, SK
    Nguyen, JT
    Chory, J
    Harrison, MJ
    Weigel, D
    [J]. SCIENCE, 1999, 286 (5446) : 1962 - 1965