On the size-dependent phase transformation in nanoparticulate zirconia

被引:263
作者
Chraska, T
King, AH [1 ]
Berndt, CC
机构
[1] Purdue Univ, Sch Mat Engn, W Lafayette, IN 47907 USA
[2] Univ Virginia, Dept Mat Sci & Engn, Charlottesville, VA 22903 USA
[3] SUNY Stony Brook, Dept Mat Sci & Engn, Stony Brook, NY 11794 USA
来源
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING | 2000年 / 286卷 / 01期
基金
美国国家科学基金会;
关键词
zirconia; nanoparticles; phase stability; coarsening; particle size distribution; surface energy;
D O I
10.1016/S0921-5093(00)00625-0
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We have studied the structures of zirconia nanoparticles formed by plasma-spraying an organo-metallic precursor. Inspection of the particles in the TEM reveals that they adopt one of two distinct crystal structures, depending upon their size. The smallest particles have the tetragonal structure, while larger ones are monoclinic. Interpolation of the data reveals a critical size above which the monoclinic structure is stable. Upon annealing, the zirconia particles coarsen and undergo a phase transformation when the particle size is of the order of 18 nm, for reasons associated with the surface energy, and the occurrence of this phase transformation produces a sudden change in the driving force for coarsening. Grain size distributions below the critical size for the transformation are log-normal, but as the transformation occurs, the size distribution changes to a markedly less skewed form. The development of this distribution is followed to establish whether it grows self-similarly, or returns to log-normality once normal driving forces are restored after the phase transformation is complete. (C) 2000 Elsevier Science S.A. All rights reserved.
引用
收藏
页码:169 / 178
页数:10
相关论文
共 35 条
[1]   PRESSURE-TEMPERATURE PHASE-DIAGRAM OF ZIRCONIA [J].
BLOCK, S ;
DAJORNADA, JAH ;
PIERMARINI, GJ .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1985, 68 (09) :497-499
[2]   NEUTRON POWDER INVESTIGATION OF THE TETRAGONAL TO MONOCLINIC PHASE-TRANSFORMATION IN UNDOPED ZIRCONIA [J].
BOYSEN, H ;
FREY, F ;
VOGT, T .
ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE, 1991, 47 :881-886
[3]  
Chang W., 1993, Nanostructured Materials, V2, P29, DOI 10.1016/0965-9773(93)90047-F
[4]   First-principles study of the surfaces of zirconia [J].
Christensen, A ;
Carter, EA .
PHYSICAL REVIEW B, 1998, 58 (12) :8050-8064
[5]   PHASE-TRANSITIONS AND ELASTICITY IN ZIRCONIA [J].
COHEN, RE ;
MEHL, MJ ;
BOYER, LL .
PHYSICA B & C, 1988, 150 (1-2) :1-9
[6]   STABILIZATION OF TETRAGONAL STRUCTURE IN ZIRCONIA MICROCRYSTALS [J].
GARVIE, RC .
JOURNAL OF PHYSICAL CHEMISTRY, 1978, 82 (02) :218-224
[7]   INTRINSIC SIZE DEPENDENCE OF THE PHASE-TRANSFORMATION TEMPERATURE IN ZIRCONIA MICROCRYSTALS [J].
GARVIE, RC ;
GOSS, MF .
JOURNAL OF MATERIALS SCIENCE, 1986, 21 (04) :1253-1257
[8]   OCCURRENCE OF METASTABLE TETRAGONAL ZIRCONIA AS A CRYSTALLITE SIZE EFFECT [J].
GARVIE, RC .
JOURNAL OF PHYSICAL CHEMISTRY, 1965, 69 (04) :1238-&
[9]   CERAMIC STEEL [J].
GARVIE, RC ;
HANNINK, RH ;
PASCOE, RT .
NATURE, 1975, 258 (5537) :703-704
[10]   THE DISPLACIVE CUBIC-]TETRAGONAL TRANSFORMATION IN ZRO2 ALLOYS [J].
HEUER, AH ;
CHAIM, R ;
LANTERI, V .
ACTA METALLURGICA, 1987, 35 (03) :661-666