Motor imagery and EEG-based control of spelling devices and neuroprostheses

被引:146
作者
Neuper, Christa
Mueller-Putz, Gernot R.
Scherer, Reinhold
Pfurtscheller, Gert
机构
[1] Graz Univ, Inst Psychol, A-8010 Graz, Austria
[2] Graz Univ Technol, Lab Brain Comp Interfaces, Inst Knowledge Discovery, A-8010 Graz, Austria
来源
EVENT-RELATED DYNAMICS OF BRAIN OSCILLATIONS | 2006年 / 159卷
基金
奥地利科学基金会;
关键词
brain-computer interface (BCI); motor imagery; sensorimotor rhythm event-related; desynchronization (ERD); event-related synchronization (ERS); neuroprosthesis; virtual keyboard;
D O I
10.1016/S0079-6123(06)59025-9
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
A brain-computer interface (BCI) transforms signals originating from the human brain into commands that can control devices or applications. With this, a BCI provides a new non-muscular communication channel, which can be used to assist patients who have highly compromised motor functions. The Graz-BCI uses motor imagery and associated oscillatory EEG signals from the sensorimotor cortex for device control. As a result of research in the past 15 years, the classification of ERD/ERS patterns in single EEG trials during motor execution and motor imagery forms the basis of this sensorimotor-rhythm controlled BCI. The major frequency bands of cortical oscillations considered here are the 8-13 and 15-30 Hz bands. This chapter describes the basic methods used in Graz-BCI research and outlines possible clinical applications.
引用
收藏
页码:393 / 409
页数:17
相关论文
共 58 条
[1]   MOTOR IMAGERY - PERCEPTION OR ACTION [J].
ANNETT, J .
NEUROPSYCHOLOGIA, 1995, 33 (11) :1395-1417
[2]   A spelling device for the paralysed [J].
Birbaumer, N ;
Ghanayim, N ;
Hinterberger, T ;
Iversen, I ;
Kotchoubey, B ;
Kübler, A ;
Perelmouter, J ;
Taub, E ;
Flor, H .
NATURE, 1999, 398 (6725) :297-298
[3]   Initial oh-line evaluations of the LF-ASD brain-computer interface with able-bodied and spinal-cord subjects using imagined voluntary motor potentials [J].
Birch, GE ;
Bozorgzadeh, Z ;
Mason, SG .
IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2002, 10 (04) :219-224
[4]   The use of EEG modifications due to motor imagery for brain-computer interfaces [J].
Cincotti, F ;
Mattia, D ;
Babiloni, C ;
Carducci, F ;
Salinari, S ;
Bianchi, L ;
Marciani, MG ;
Babiloni, F .
IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2003, 11 (02) :131-133
[5]   A time-series prediction approach for feature extraction in a brain-computer interface [J].
Coyle, D ;
Prasad, G ;
McGinnity, TM .
IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2005, 13 (04) :461-467
[6]   Learning to control brain activity: A review of the production and control of EEG components for driving brain-computer interface (BCI) systems [J].
Curran, EA ;
Stokes, MJ .
BRAIN AND COGNITION, 2003, 51 (03) :326-336
[7]   Learned regulation of spatially localized brain activation using real-time fMRI [J].
DeCharms, RC ;
Christoff, K ;
Glover, GH ;
Pauly, JM ;
Whitfield, S ;
Gabrieli, JDE .
NEUROIMAGE, 2004, 21 (01) :436-443
[8]   Rapid prototyping of an EEG-based brain-computer interface (BCI) [J].
Guger, C ;
Schlögl, A ;
Neuper, C ;
Walterspacher, D ;
Strein, T ;
Pfurtscheller, G .
IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2001, 9 (01) :49-58
[9]  
Hart, 2006, PATTERN CLASSIFICATI
[10]   Control of a hand grasp neuroprosthesis using an electroencephalogram-triggered switch: demonstration of improvements in performance using wavepacket analysis [J].
Heasman, JM ;
Scott, TRD ;
Kirkup, L ;
Flynn, RY ;
Vare, VA ;
Gschwind, CR .
MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2002, 40 (05) :588-593