This paper proposes using the support vector machines (SVMs) experts for time series forecasting. The generalized SVMs experts have a two-stage neural network architecture. In the first stage, self-organizing feature map (SOM) is used as a clustering algorithm to partition the whole input space into several disjointed regions. A tree-structured architecture is adopted in the partition to avoid the problem of predetermining the number of partitioned regions. Then, in the second stage, multiple SVMs, also called SVM experts, that best fit partitioned regions are constructed by finding the most appropriate kernel function and the optimal free parameters of SVMs. The sunspot data, Santa Fe data sets A, C and D, and the two building data sets are evaluated in the experiment. The simulation shows that the SVMs experts achieve significant improvement in the generalization performance in comparison with the single SVMs models. In addition, the SVMs experts also converge faster and use fewer support vectors. (C) 2002 Elsevier Science B.V. All rights reserved.