On the use of artificial neural networks for the analysis of survival data

被引:35
作者
Brown, SF [1 ]
Branford, AJ [1 ]
Moran, W [1 ]
机构
[1] COOPERAT RES CTR SENSOR SIGNAL & INFORMAT PROC,ADELAIDE,SA 5001,AUSTRALIA
来源
IEEE TRANSACTIONS ON NEURAL NETWORKS | 1997年 / 8卷 / 05期
关键词
backpropagation; neural-network applications; statistics; survival analysis;
D O I
10.1109/72.623209
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Artificial neural networks are a powerful tool for analyzing data sets where there are complicated nonlinear interactions between the measured inputs and the quantity to be predicted. We show that the results obtained when neural networks are applied to survival data depend critically on the treatment of censoring in the data. When the censoring is modeled correctly, neural networks are a robust model independent technique for the analysis of very large sets of survival data.
引用
收藏
页码:1071 / 1077
页数:7
相关论文
共 7 条
[1]   LARGE SAMPLE STUDY OF LIFE TABLE AND PRODUCT LIMIT ESTIMATES UNDER RANDOM CENSORSHIP [J].
BRESLOW, N ;
CROWLEY, J .
ANNALS OF STATISTICS, 1974, 2 (03) :437-453
[2]  
CHOONG PL, 1993, P 1 AUSTR NZ C INT I, P283
[3]  
Cox D. R., 1984, ANAL SURVIVAL DATA
[4]  
DESILVA CJS, 1994, AUST COMPUT J, V26, P78
[5]  
Hertz J., 1991, Introduction to the Theory of Neural Computation
[6]  
KALBFLEISCH JD, 1980, STATISTICAL ANAL FAI
[7]   NONPARAMETRIC-ESTIMATION FROM INCOMPLETE OBSERVATIONS [J].
KAPLAN, EL ;
MEIER, P .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1958, 53 (282) :457-481