Spatial patterns of desert annuals in relation to shrub effects on soil moisture

被引:47
作者
Li, J. [1 ]
Zhao, C. Y. [1 ]
Song, Y. J. [1 ]
Sheng, Y. [1 ]
Zhu, H. [1 ]
机构
[1] CAS, Key Lab Oasis Ecol & Desert Environm, Xinjiang Inst Ecol & Geog, Urumqi 830011, Peoples R China
基金
国家高技术研究发展计划(863计划);
关键词
Facilitation; Geostatistics; Gurbantunggut Desert; Plant interaction; POSITIVE INTERACTIONS; CHIHUAHUAN DESERT; ARID ECOSYSTEMS; PLANT-COMMUNITIES; MOJAVE DESERT; FACILITATION; UNDERSTOREY; GRASSLANDS; DYNAMICS; QUANTIFICATION;
D O I
10.1111/j.1654-1103.2009.01135.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Questions What are the effects of a shrub (Haloxylon ammodendron) on spatial patterns of soil moisture in different seasons? How does productivity of understorey annuals respond to these effects? Are such effects always positive for annuals under shrubs? Location South Gurbantunggut Desert, northwest China. Methods Using geostatistics, we explored seasonal patterns of topsoil moisture in a 12 x 9-m plot over the growing season. To determine spatial patterns of understorey annuals in response to H. ammodendron presence, biomass of annuals was recorded in four 0.2 x 5.0-m transects from the centre of a shrub to the space between shrubs (interspace). We also investigated vertical distribution of root biomass for annuals and soil moisture dynamics across soil profiles in shrub-canopied areas and interspaces. Results Topsoil moisture changed from autocorrelation in the wet spring to random structure in the dry season, while soil moisture below 20 cm was higher in shrub-canopied areas. Across all microhabitats, soil moisture in upper soil layers was higher than in deeper soil layers during the spring wet season, but lower during summer drought. Topsoil was close to air-dry during the dry season and developed a 'dry sand layer' that reduced evaporative loss of soil water from deeper layers recharged by snowmelt in spring. Aboveground biomass of understorey annuals was lowest adjacent to shrub stems and peaked at the shrub margin, forming a 'ring' of high herbaceous productivity surrounding individual shrubs. To acclimate to drier conditions, annuals in interspaces invested more root biomass in deeper soil with a root/shoot ratio (R/S) twice that in canopied areas. Conclusions Positive and negative effects of shrubs on understorey plants in arid ecosystems are commonly related to nature of the environmental stress and tested species. Our results suggest there is also microhabitat-dependence in the Gurbantunggut Desert. Soil water under H. ammodendron is seasonally enriched in topsoil and deeper layers. Understorey annuals respond to the effect of shrubs on soil water availability with lower R/S and less root biomass in deeper soil layers and develop a 'ring' of high productivity at the shrub patch margin where positive and negative effects of shrubs are balanced.
引用
收藏
页码:221 / 232
页数:12
相关论文
共 47 条
[1]   Plant interactions govern population dynamics in a semi-arid plant community [J].
Armas, C ;
Pugnaire, FI .
JOURNAL OF ECOLOGY, 2005, 93 (05) :978-989
[2]   POSITIVE INTERACTIONS IN COMMUNITIES [J].
BERTNESS, MD ;
CALLAWAY, R .
TRENDS IN ECOLOGY & EVOLUTION, 1994, 9 (05) :191-193
[3]   Association between plant canopies and the spatial patterns of infiltration in shrubland and grassland of the Chihuahuan Desert, New Mexico [J].
Bhark, EW ;
Small, EE .
ECOSYSTEMS, 2003, 6 (02) :185-196
[4]   Temporal and micro-spatial patterning of seedling establishment. Consequences for patch dynamics in the southern Monte, Argentina [J].
Bisigato A.J. ;
Bertiller M.B. .
Plant Ecology, 2004, 174 (2) :235-246
[5]   Facilitation in plant communities:: the past, the present, and the future [J].
Brooker, Rob W. ;
Maestre, Fernando T. ;
Callaway, Ragan M. ;
Lortie, Christopher L. ;
Cavieres, Lohengrin A. ;
Kunstler, Georges ;
Liancourt, Pierre ;
Tielboerger, Katja ;
Travis, Justin M. J. ;
Anthelme, Fabien ;
Armas, Cristina ;
Coll, Lluis ;
Corcket, Emmanuel ;
Delzon, Sylvain ;
Forey, Estelle ;
Kikvidze, Zaal ;
Olofsson, Johan ;
Pugnaire, Francisco I. ;
Quiroz, Constanza L. ;
Saccone, Patrick ;
Schiffers, Katja ;
Seifan, Merav ;
Touzard, Blaise ;
Michalet, Richard .
JOURNAL OF ECOLOGY, 2008, 96 (01) :18-34
[6]   Inclusion of facilitation into ecological theory [J].
Bruno, JF ;
Stachowicz, JJ ;
Bertness, MD .
TRENDS IN ECOLOGY & EVOLUTION, 2003, 18 (03) :119-125
[7]   Positive interactions among plants [J].
Callaway, RM .
BOTANICAL REVIEW, 1995, 61 (04) :306-349
[8]   Positive interactions among alpine plants increase with stress [J].
Callaway, RM ;
Brooker, RW ;
Choler, P ;
Kikvidze, Z ;
Lortie, CJ ;
Michalet, R ;
Paolini, L ;
Pugnaire, FI ;
Newingham, B ;
Aschehoug, ET ;
Armas, C ;
Kikodze, D ;
Cook, BJ .
NATURE, 2002, 417 (6891) :844-848
[9]   Is the interaction between Retama sphaerocarpa and its understorey herbaceous vegetation always reciprocally positive?: Competition-facilitation shift during Retama establishment [J].
Espigares, T ;
López-Pintor, A ;
Benayas, JMR .
ACTA OECOLOGICA-INTERNATIONAL JOURNAL OF ECOLOGY, 2004, 26 (02) :121-128
[10]  
Flores J, 2003, J VEG SCI, V14, P911, DOI 10.1111/j.1654-1103.2003.tb02225.x