A further study of numerical errors in large-eddy simulations

被引:189
作者
Chow, FK [1 ]
Moin, P
机构
[1] Stanford Univ, Dept Civil & Environm Engn, Environm Fluid Mech Lab, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
LES; large-eddy simulation; numerical error analysis; turbulence;
D O I
10.1016/S0021-9991(02)00020-7
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Numerical errors in large-eddy simulations (LES) arise from aliasing and discretization errors, and errors in the subfilter-scale (SFS) turbulence model. Using a direct numerical simulation (DNS) dataset of stably stratified shear flow to perform a priori tests, we compare the numerical error from several finite difference schemes to the magnitude of the SFS force. This is an extension of Ghosal's analysis [J. Comput. Phys. 125 (1996) 187] to realistic flow fields. By evaluating different grid resolutions as well as different filter-grid ratios, we provide guidelines for LES: for a second-order finite difference scheme, a filter-grid ratio of at least four is desired; for a sixth-order Pade scheme, a filter-grid ratio of two is sufficient. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:366 / 380
页数:15
相关论文
共 12 条
[1]   Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy [J].
Balsara, DS ;
Shu, CW .
JOURNAL OF COMPUTATIONAL PHYSICS, 2000, 160 (02) :405-452
[2]   The effect of the formulation of nonlinear terms on aliasing errors in spectral methods [J].
Blaisdell, GA ;
Spyropoulos, ET ;
Qin, JH .
APPLIED NUMERICAL MATHEMATICS, 1996, 21 (03) :207-219
[3]   An analysis of numerical errors in large-eddy simulations of turbulence [J].
Ghosal, S .
JOURNAL OF COMPUTATIONAL PHYSICS, 1996, 125 (01) :187-206
[4]   Influence of advection differencing error upon large-eddy simulation accuracy [J].
Glendening, JW ;
Haack, T .
BOUNDARY-LAYER METEOROLOGY, 2001, 98 (01) :127-153
[5]   On the effect of numerical errors in large eddy simulations of turbulent flows [J].
Kravchenko, AG ;
Moin, P .
JOURNAL OF COMPUTATIONAL PHYSICS, 1997, 131 (02) :310-322
[6]   COMPACT FINITE-DIFFERENCE SCHEMES WITH SPECTRAL-LIKE RESOLUTION [J].
LELE, SK .
JOURNAL OF COMPUTATIONAL PHYSICS, 1992, 103 (01) :16-42
[7]  
Moin P., 2001, Fundamentals of Engineering Numerical Analysis
[8]   Fully conservative higher order finite difference schemes for incompressible flow [J].
Morinishi, Y ;
Lund, TS ;
Vasilyev, OV ;
Moin, P .
JOURNAL OF COMPUTATIONAL PHYSICS, 1998, 143 (01) :90-124
[9]  
MORINISHI Y, 1998, SUBGRID SCALE MODELI
[10]   Scaling and parameterization of stratified homogeneous turbulent shear flow [J].
Shih, LH ;
Koseff, JR ;
Ferziger, JH ;
Rehmann, CR .
JOURNAL OF FLUID MECHANICS, 2000, 412 :1-20