The myxochelin iron transport regulon of the myxobacterium Stigmatella aurantiaca Sg a15

被引:92
作者
Silakowski, B
Kunze, B
Nordsiek, G
Blöcker, H
Höfle, G
Müller, R
机构
[1] Gesell Biotechnol Forsch mbH, Abt NBI MX, D-38124 Braunschweig, Germany
[2] Tech Univ Carolo Wilhelmina Braunschweig, Inst Pharmazeut Biol, D-3300 Braunschweig, Germany
来源
EUROPEAN JOURNAL OF BIOCHEMISTRY | 2000年 / 267卷 / 21期
关键词
iron chelator; myxobacteria; myxochelin; peptide synthetase; Stigmatella aurantiaca;
D O I
10.1046/j.1432-1327.2000.01740.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The biosynthetic gene cluster of the myxochelin-type iron chelator was cloned from Stigmatella aurantiaca Sg a15 and characterized. This catecholate siderophore was only known from two other myxobacteria. The biosynthetic genes of 2,3-dihydroxybenzoic acid are located in the cluster (mxcC-mxcF). Two molecules of 2,3-dihydroxybenzoic acid are activated and condensed with lysine in a unique way by a protein homologous to nonribosomal peptide synthetases (MxcG). Inactivation of mxcG, which encodes an adenylation domain for lysine, results in a myxochelin negative mutant unable to grow under iron-limiting conditions. Growth could be restored by adding Fe3+, myxochelin A or B to the medium. Inactivation of mxcD leads to the same phenotype. A new type of reductive release from nonribosomal peptide synthetases of the 2,3-dihydroxybenzoic acid bis-amide of lysine from MxcG, catalyzed by a protein domain with homology to NAD(P) binding sites, is discussed. The product of a gene, encoding a protein similar to glutamate-1-semialdehyde 2,1-aminomutases (mxcL), is assumed to transaminate the aldehyde that is proposed as an intermediate. Further genes encoding proteins homologous to typical iron utilization and iron uptake polypeptides are reported.
引用
收藏
页码:6476 / 6485
页数:10
相关论文
共 37 条
[1]   Metabolic diversity in myxobacteria:: identification of the myxalamid and the stigmatellin biosynthetic gene cluster of Stigmatella aurantiaca Sg a15 and a combined polyketide-(poly)peptide gene cluster from the epothilone producing strain Sorangium cellulosum So ce90 [J].
Beyer, S ;
Kunze, B ;
Silakowski, B ;
Müller, R .
BIOCHIMICA ET BIOPHYSICA ACTA-GENE STRUCTURE AND EXPRESSION, 1999, 1445 (02) :185-195
[2]   A new DNA sequence assembly program [J].
Bonfield, JK ;
Smith, KF ;
Staden, R .
NUCLEIC ACIDS RESEARCH, 1995, 23 (24) :4992-4999
[3]  
Braun V, 1998, MET IONS BIOL SYST, V35, P67
[4]   REGULATION OF DIVERGENT TRANSCRIPTION FROM THE IRON-RESPONSIVE FEPB-ENTC PROMOTER-OPERATOR REGIONS IN ESCHERICHIA-COLI [J].
BRICKMAN, TJ ;
OZENBERGER, BA ;
MCINTOSH, MA .
JOURNAL OF MOLECULAR BIOLOGY, 1990, 212 (04) :669-682
[5]   Predictive, structure-based model of amino acid recognition by nonribosomal peptide synthetase adenylation domains [J].
Challis, GL ;
Ravel, J ;
Townsend, CA .
CHEMISTRY & BIOLOGY, 2000, 7 (03) :211-224
[6]   Recent advances in the social and developmental biology of the myxobacteria [J].
Dworkin, M .
MICROBIOLOGICAL REVIEWS, 1996, 60 (01) :70-&
[7]   Lysine biosynthesis in Saccharomyces cerevisiae:: Mechanism of α-aminoadipate reductase (Lys2) involves posttranslational phosphopantetheinylation by Lys5 [J].
Ehmann, DE ;
Gehring, AM ;
Walsh, CT .
BIOCHEMISTRY, 1999, 38 (19) :6171-6177
[8]   Opening the iron box:: Transcriptional metalloregulation by the fur protein [J].
Escolar, L ;
Pérez-Martín, J ;
De Lorenzo, V .
JOURNAL OF BACTERIOLOGY, 1999, 181 (20) :6223-6229
[9]   Reconstitution and characterization of the Escherichia coli enterobactin synthetase from EntB, EntE, and EntF [J].
Gehring, AM ;
Mori, I ;
Walsh, CT .
BIOCHEMISTRY, 1998, 37 (08) :2648-2659
[10]   Iron acquisition in plague: modular logic in enzymatic biogenesis of yersiniabactin by Yersinia pestis [J].
Gehring, AM ;
DeMoll, E ;
Fetherston, JD ;
Mori, I ;
Mayhew, GF ;
Blattner, FR ;
Walsh, CT ;
Perry, RD .
CHEMISTRY & BIOLOGY, 1998, 5 (10) :573-586