Investigation of the aerosol structure over an urban area using a polarization lidar

被引:10
作者
Kolev, N [1 ]
Tatarov, B [1 ]
Kaprielov, B [1 ]
Kolev, I [1 ]
机构
[1] Bulgarian Acad Sci, Inst Elect, BU-1784 Sofia, Bulgaria
来源
JOURNAL OF ENVIRONMENTAL MONITORING | 2004年 / 6卷 / 10期
关键词
D O I
10.1039/b404096c
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The paper presents a lidar study of the aerosol structure in the planetary boundary layer in the case of radiation fog and haze. A conceptual model of the dynamics of the depolarization coefficient pro. le during the mixing layer development, taking into account the presence of a multilayered inversions and radiation fogs, is proposed. Various techniques are employed in the processing of the lidar signal in order to determine the mixing layer height as well as more details of the aerosol structure in the low atmosphere, namely, finding the maximum of the signal returned from the lowest temperature inversion, the crossing point of the S function's first derivative with the x axis, and profiles of the depolarization ratio. After the complete destruction of the stable strati. cation, a low constant value of the depolarization ratio within the newly formed mixing layer is being observed. The study of stable boundary layer disintegration and convective boundary layer formation in the presence of fogs and/or clouds is of both scientific and practical significance in what concerns the protection of the environment and the aviation meteorology.
引用
收藏
页码:834 / 840
页数:7
相关论文
共 23 条
[1]  
Collins R.T. H., 1976, Topics in Applied Physics, V14, P71, DOI [10.1007/3-540-07743-X_18, DOI 10.1007/3-540-07743-X_18]
[2]  
DONEV E, 1995, ACTA METEOROLOGICA S, V9, P101
[3]   STUDY OF THE MOIST CONVECTIVE BOUNDARY-LAYER STRUCTURE BY BACKSCATTERING LIDAR [J].
DUPONT, E ;
PELON, J ;
FLAMANT, C .
BOUNDARY-LAYER METEOROLOGY, 1994, 69 (1-2) :1-25
[4]   MULTIPLE FIELD-OF-VIEW LIDAR RETURNS FROM ATMOSPHERIC AEROSOLS [J].
HUTT, DL ;
BISSONNETTE, LR ;
DURAND, L .
APPLIED OPTICS, 1994, 33 (12) :2338-2348
[5]   LIDAR DETERMINATION OF WINDS BY AEROSOL INHOMOGENEITIES - MOTION VELOCITY IN THE PLANETARY BOUNDARY-LAYER [J].
KOLEV, I ;
PARVANOV, O ;
KAPRIELOV, B .
APPLIED OPTICS, 1988, 27 (12) :2524-2531
[6]   Lidar observation of the nocturnal boundary layer formation over Sofia, Bulgaria [J].
Kolev, I ;
Savov, P ;
Kaprielov, B ;
Parvanov, O ;
Simeonov, V .
ATMOSPHERIC ENVIRONMENT, 2000, 34 (19) :3223-3235
[7]  
KOLEV I, IN PRESS J REMOTE SE
[8]   Urban boundary-layer height determination from lidar measurements over the Paris area [J].
Menut, L ;
Flamant, C ;
Pelon, J ;
Flamant, PH .
APPLIED OPTICS, 1999, 38 (06) :945-954
[9]   Lidar network observation of Asian dust (Kosa) in Japan [J].
Murayama, T ;
Sugimoto, N ;
Matsui, I ;
Ara, K ;
Iokibe, K ;
Koga, R ;
Sakai, T ;
Kubota, Y ;
Saito, Y ;
Abo, M ;
Hagiwara, N ;
Kuze, H ;
Kaneyasu, N ;
Imasu, R ;
Asai, K ;
Aoki, K .
OPTICAL REMOTE SENSING FOR INDUSTRY AND ENVIRONMENTAL MONITORING, 1998, 3504 :8-15
[10]   Application of lidar depolarization measurement in the atmospheric boundary layer: Effects of dust and sea-salt particles [J].
Murayama, T ;
Okamoto, H ;
Kaneyasu, N ;
Kamataki, H ;
Miura, K .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1999, 104 (D24) :31781-31792