Characterization of the p53-dependent postmitotic checkpoint following spindle disruption

被引:458
作者
Lanni, JS
Jacks, T
机构
[1] MIT, Ctr Canc Res, Cambridge, MA 02139 USA
[2] MIT, Dept Biol, Cambridge, MA 02139 USA
[3] MIT, Howard Hughes Med Inst, Cambridge, MA 02139 USA
关键词
D O I
10.1128/MCB.18.2.1055
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The p53 tumor suppressor gene product is known to act as part of a cell cycle checkpoint in G(1) following DNA damage. In order to investigate a proposed novel role for p53 as a checkpoint at mitosis following disruption of the mitotic spindle, we have used time-lapse videomicroscopy to show that both p53(+/+) and p53(-/-) murine fibroblasts treated with the spindle drug nocodazole undergo transient arrest at mitosis for the same length of time, Thus, p53 does not participate in checkpoint function at mitosis. However, p53 does play a critical role in nocodazole-treated cells which have exited mitotic arrest without undergoing cytokinesis and have thereby adapted, We have determined that in nocodazole-treated, adapted cells, p53 is required during a specific time window to prevent cells from reentering the cell cycle and initiating another round of DNA synthesis, Despite having 4N DNA content, adapted cells are similar to G(1) cells in that they have upregulated cyclin E expression and hypophosphorylated Rb protein. The mechanism of the p53-dependent arrest in nocodazole-treated adapted cells requires the cyclin-dependent kinase inhibitor p21, as p21(-/-) fibroblasts fail to arrest in response to nocodazole treatment and become polyploid. Moreover, p21 is required to a similar extent to maintain cell cycle arrest after either nocodazole treatment or irradiation, Thus, the p53-dependent checkpoint following spindle disruption functionally overlaps with the p53-dependent checkpoint following DNA damage.
引用
收藏
页码:1055 / 1064
页数:10
相关论文
共 42 条
  • [1] BOTH VIRAL (ADENOVIRUS E1B) AND CELLULAR (HSP-70, P53) COMPONENTS INTERACT WITH CENTROSOMES
    BROWN, CR
    DOXSEY, SJ
    WHITE, E
    WELCH, WJ
    [J]. JOURNAL OF CELLULAR PHYSIOLOGY, 1994, 160 (01) : 47 - 60
  • [2] RADIATION-INDUCED CELL-CYCLE ARREST COMPROMISED BY P21 DEFICIENCY
    BRUGAROLAS, J
    CHANDRASEKARAN, C
    GORDON, JI
    BEACH, D
    JACKS, T
    HANNON, GJ
    [J]. NATURE, 1995, 377 (6549) : 552 - 557
  • [3] THE RETINOBLASTOMA PROTEIN IS PHOSPHORYLATED DURING SPECIFIC PHASES OF THE CELL-CYCLE
    BUCHKOVICH, K
    DUFFY, LA
    HARLOW, E
    [J]. CELL, 1989, 58 (06) : 1097 - 1105
  • [4] PHOSPHORYLATION OF THE RETINOBLASTOMA GENE-PRODUCT IS MODULATED DURING THE CELL-CYCLE AND CELLULAR-DIFFERENTIATION
    CHEN, PL
    SCULLY, P
    SHEW, JY
    WANG, JYJ
    LEE, WH
    [J]. CELL, 1989, 58 (06) : 1193 - 1198
  • [5] A P53-DEPENDENT MOUSE SPINDLE CHECKPOINT
    CROSS, SM
    SANCHEZ, CA
    MORGAN, CA
    SCHIMKE, MK
    RAMEL, S
    IDZERDA, RL
    RASKIND, WH
    REID, BJ
    [J]. SCIENCE, 1995, 267 (5202) : 1353 - 1356
  • [6] THE PRODUCT OF THE RETINOBLASTOMA SUSCEPTIBILITY GENE HAS PROPERTIES OF A CELL-CYCLE REGULATORY ELEMENT
    DECAPRIO, JA
    LUDLOW, JW
    LYNCH, D
    FURUKAWA, Y
    GRIFFIN, J
    PIWNICAWORMS, H
    HUANG, CM
    LIVINGSTON, DM
    [J]. CELL, 1989, 58 (06) : 1085 - 1095
  • [7] MICE LACKING P21(C/P1/WAF1) UNDERGO NORMAL DEVELOPMENT, BUT ARE DEFECTIVE IN G1 CHECKPOINT CONTROL
    DENG, CX
    ZHANG, PM
    HARPER, JW
    ELLEDGE, SJ
    LEDER, P
    [J]. CELL, 1995, 82 (04) : 675 - 684
  • [8] Di Leonardo A, 1997, CANCER RES, V57, P1013
  • [9] THE XENOPUS CDC2 PROTEIN IS A COMPONENT OF MPF, A CYTOPLASMIC REGULATOR OF MITOSIS
    DUNPHY, WG
    BRIZUELA, L
    BEACH, D
    NEWPORT, J
    [J]. CELL, 1988, 54 (03) : 423 - 431
  • [10] WAF1, A POTENTIAL MEDIATOR OF P53 TUMOR SUPPRESSION
    ELDEIRY, WS
    TOKINO, T
    VELCULESCU, VE
    LEVY, DB
    PARSONS, R
    TRENT, JM
    LIN, D
    MERCER, WE
    KINZLER, KW
    VOGELSTEIN, B
    [J]. CELL, 1993, 75 (04) : 817 - 825