Black diring and infinite nonuniqueness

被引:127
作者
Iguchi, Hideo [1 ]
Mishima, Takashi [1 ]
机构
[1] Nihon Univ, Coll Sci & Technol, Phys Lab, Funabashi, Chiba 2748501, Japan
来源
PHYSICAL REVIEW D | 2007年 / 75卷 / 06期
关键词
D O I
10.1103/PhysRevD.75.064018
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We show that the S-1-rotating black rings can be superposed by the solution-generating technique. We analyze the black diring solution for the simplest case of multiple rings. There exists an equilibrium black diring where the conical singularities are cured by the suitable choice of physical parameters. Also there are infinite numbers of black dirings with the same mass and angular momentum. These dirings can have two different continuous limits of single black rings. Therefore, we can transform the fat black ring to the thin ring with the same mass and angular momentum by way of the diring solutions.
引用
收藏
页数:7
相关论文
共 24 条
[1]   An infinite number of stationary soliton solutions to the five-dimensional vacuum Einstein equation [J].
Azuma, Takahiro ;
Koikawa, Takao .
PROGRESS OF THEORETICAL PHYSICS, 2006, 116 (02) :319-328
[2]   SUPERPOSITION OF THE KERR METRIC WITH THE GENERALIZED EREZ-ROSEN SOLUTION [J].
CASTEJONAMENEDO, J ;
MANKO, VS .
PHYSICAL REVIEW D, 1990, 41 (06) :2018-2020
[3]  
ELVANG H, HEPTH0701035, P23507
[4]   Generalized Weyl solutions [J].
Emparan, R ;
Reall, HS .
PHYSICAL REVIEW D, 2002, 65 (08) :840251-8402526
[5]   A rotating black ring solution in five dimensions [J].
Emparan, R ;
Reall, HS .
PHYSICAL REVIEW LETTERS, 2002, 88 (10) :4
[6]   Rotating circular strings, and infinite non-uniqueness of black rings [J].
Emparan, R .
JOURNAL OF HIGH ENERGY PHYSICS, 2004, (03) :1495-1522
[7]   Black rings [J].
Emparan, Roberto ;
Reall, Harvey S. .
CLASSICAL AND QUANTUM GRAVITY, 2006, 23 (20) :R169-R197
[8]   Concentric black rings [J].
Gauntlett, JP ;
Gutowski, JB .
PHYSICAL REVIEW D, 2005, 71 (02) :025013-1
[9]   General concentric black rings [J].
Gauntlett, JP ;
Gutowski, JB .
PHYSICAL REVIEW D, 2005, 71 (04) :045002-1
[10]   Stationary and axisymmetric solutions of higher-dimensional general relativity [J].
Harmark, T .
PHYSICAL REVIEW D, 2004, 70 (12) :124002-1