Engineering strategies for peripheral nerve repair

被引:125
作者
Hudson, TW
Evans, GRD
Schmidt, CE [1 ]
机构
[1] Univ Texas, Dept Chem Engn, Austin, TX 78712 USA
[2] Univ Texas, Dept Biomed Engn, Austin, TX 78712 USA
[3] Univ Texas, MD Anderson Canc Ctr, Dept Plast Surg, Houston, TX 77030 USA
关键词
D O I
10.1016/S0030-5898(05)70166-8
中图分类号
R826.8 [整形外科学]; R782.2 [口腔颌面部整形外科学]; R726.2 [小儿整形外科学]; R62 [整形外科学(修复外科学)];
学科分类号
摘要
Tissue engineering in the peripheral nervous system unites efforts by physicians, engineers, and biologists to create either natural or synthetic tubular nerve guidance channels as alternatives to nerve autografts for the repair of peripheral nerve defects. Guidance channels help direct axons sprouting from the regenerating nerve end, provide a conduit for diffusion of neurotropic and neurotrophic factors secreted by the damaged nerve stumps, and minimize infiltration of fibrous tissue. In addition to efforts to control these physical characteristics of nerve guidance channels, researchers are optimizing the incorporation of biologic factors and engineering interactive biomaterial that can specifically stimulate the regeneration process. Current and future research will ultimately result in biologically active and interactive nerve guidance channels that can support and enhance peripheral nerve regeneration over longer, more clinically relevant defect lengths.
引用
收藏
页码:485 / +
页数:14
相关论文
共 91 条
[1]  
AEBISCHER P, 1989, J NEUROSCI, V9, P3590
[2]   BLIND-ENDED SEMIPERMEABLE GUIDANCE CHANNELS SUPPORT PERIPHERAL-NERVE REGENERATION IN THE ABSENCE OF A DISTAL NERVE STUMP [J].
AEBISCHER, P ;
GUENARD, V ;
WINN, SR ;
VALENTINI, RF ;
GALLETTI, PM .
BRAIN RESEARCH, 1988, 454 (1-2) :179-187
[3]   BASIC FIBROBLAST GROWTH-FACTOR RELEASED FROM SYNTHETIC GUIDANCE CHANNELS FACILITATES PERIPHERAL-NERVE REGENERATION ACROSS LONG NERVE GAPS [J].
AEBISCHER, P ;
SALESSIOTIS, AN ;
WINN, SR .
JOURNAL OF NEUROSCIENCE RESEARCH, 1989, 23 (03) :282-289
[4]   THE MORPHOLOGY OF REGENERATING PERIPHERAL-NERVES IS MODULATED BY THE SURFACE MICROGEOMETRY OF POLYMERIC GUIDANCE CHANNELS [J].
AEBISCHER, P ;
GUENARD, V ;
VALENTINI, RF .
BRAIN RESEARCH, 1990, 531 (1-2) :211-218
[5]   PIEZOELECTRIC QUIDANCE CHANNELS ENHANCE REGENERATION IN THE MOUSE SCIATIC-NERVE AFTER AXOTOMY [J].
AEBISCHER, P ;
VALENTINI, RF ;
DARIO, P ;
DOMENICI, C ;
GALLETTI, PM .
BRAIN RESEARCH, 1987, 436 (01) :165-168
[6]  
Alberts E., 1885, WIEN MED PRESSE, V26, P1285
[7]   A COLLAGEN-BASED NERVE GUIDE CONDUIT FOR PERIPHERAL-NERVE REPAIR - AN ELECTROPHYSIOLOGICAL STUDY OF NERVE REGENERATION IN RODENTS AND NONHUMAN-PRIMATES [J].
ARCHIBALD, SJ ;
KRARUP, C ;
SHEFNER, J ;
LI, ST ;
MADISON, RD .
JOURNAL OF COMPARATIVE NEUROLOGY, 1991, 306 (04) :685-696
[8]   TISSUE ENGINEERING IN THE NERVOUS-SYSTEM - REVIEW [J].
BELLAMKONDA, R ;
AEBISCHER, P .
BIOTECHNOLOGY AND BIOENGINEERING, 1994, 43 (07) :543-554
[9]   LAMININ OLIGOPEPTIDE DERIVATIZED AGAROSE GELS ALLOW 3-DIMENSIONAL NEURITE EXTENSION IN-VITRO [J].
BELLAMKONDA, R ;
RANIERI, JP ;
AEBISCHER, P .
JOURNAL OF NEUROSCIENCE RESEARCH, 1995, 41 (04) :501-509
[10]   The use of cultured Schwann cells in nerve repair in a rabbit hind-limb model [J].
Brown, RE ;
Erdmann, D ;
Lyons, SF ;
Suchy, H .
JOURNAL OF RECONSTRUCTIVE MICROSURGERY, 1996, 12 (03) :149-152