Cloud condensation nuclei prediction error from application of Kohler theory: Importance for the aerosol indirect effect

被引:30
作者
Sotiropoulou, Rafaella-Eleni P. [1 ]
Nenes, Athanasios
Adams, Peter J.
Seinfeld, John H.
机构
[1] Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA
[2] Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA
[3] Carnegie Mellon Univ, Dept Civil & Environm Engn, Pittsburgh, PA 15213 USA
[4] Carnegie Mellon Univ, Dept Engn & Publ Policy, Pittsburgh, PA 15213 USA
[5] CALTECH, Dept Chem Engn, Pasadena, CA 91125 USA
[6] CALTECH, Dept Environm Sci & Engn, Pasadena, CA 91125 USA
关键词
D O I
10.1029/2006JD007834
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
[1] In situ observations of aerosol and cloud condensation nuclei (CCN) and the GISS GCM Model II' with an online aerosol simulation and explicit aerosol-cloud interactions are used to quantify the uncertainty in radiative forcing and autoconversion rate from application of Kohler theory. Simulations suggest that application of Kohler theory introduces a 10 - 20% uncertainty in global average indirect forcing and 2 - 11% uncertainty in autoconversion. Regionally, the uncertainty in indirect forcing ranges between 10 - 20%, and 5 - 50% for autoconversion. These results are insensitive to the range of updraft velocity and water vapor uptake coefficient considered. This study suggests that Kohler theory ( as implemented in climate models) is not a significant source of uncertainty for aerosol indirect forcing but can be substantial for assessments of aerosol effects on the hydrological cycle in climatically sensitive regions of the globe. This implies that improvements in the representation of GCM subgrid processes and aerosol size distribution will mostly benefit indirect forcing assessments. Predictions of autoconversion, by nature, will be subject to considerable uncertainty; its reduction may require explicit representation of size-resolved aerosol composition and mixing state.
引用
收藏
页数:12
相关论文
共 71 条
[1]   A parameterization of aerosol activation - 1. Single aerosol type [J].
Abdul-Razzak, H ;
Ghan, SJ ;
Rivera-Carpio, C .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1998, 103 (D6) :6123-6131
[2]   A parameterization of aerosol activation 2. Multiple aerosol types [J].
Abdul-Razzak, H ;
Ghan, SJ .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2000, 105 (D5) :6837-6844
[3]   Predicting global aerosol size distributions in general circulation models [J].
Adams, PJ ;
Seinfeld, JH .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2002, 107 (D19) :AAC4-1
[4]   General circulation model assessment of direct radiative forcing by the sulfate-nitrate-ammonium-water inorganic aerosol system [J].
Adams, PJ ;
Seinfeld, JH ;
Koch, D ;
Mickley, L ;
Jacob, D .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2001, 106 (D1) :1097-1111
[5]   Global concentrations of tropospheric sulfate, nitrate, and ammonium aerosol simulated in a general circulation model [J].
Adams, PJ ;
Seinfeld, JH ;
Koch, DM .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1999, 104 (D11) :13791-13823
[6]  
[Anonymous], 1921, Geofys. Publ
[7]   Effect of solute dissolution kinetics on cloud droplet formation: Extended Kohler theory [J].
Asa-Awuku, A. ;
Nenes, A. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2007, 112 (D22)
[8]  
BAUGHCUM SL, 1993, NASA REF PUBL, V1313, P89
[9]   Global gridded inventories of anthropogenic emissions of sulfur and nitrogen [J].
Benkovitz, CM ;
Scholtz, MT ;
Pacyna, J ;
Tarrason, L ;
Dignon, J ;
Voldner, EC ;
Spiro, PA ;
Logan, JA ;
Graedel, TE .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1996, 101 (D22) :29239-29253
[10]   A global high-resolution emission inventory for ammonia [J].
Bouwman, AF ;
Lee, DS ;
Asman, WAH ;
Dentener, FJ ;
VanderHoek, KW ;
Olivier, JGJ .
GLOBAL BIOGEOCHEMICAL CYCLES, 1997, 11 (04) :561-587