Kinetic mechanism and intrinsic isotope effects for the peptidylglycine α-amidating enzyme reaction

被引:78
作者
Francisco, WA
Merkler, DJ
Blackburn, NJ
Klinman, JP [1 ]
机构
[1] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA
[3] Duquesne Univ, Dept Chem & Biochem, Pittsburgh, PA 15282 USA
[4] Oregon Grad Inst Sci & Technol, Dept Chem Biochem & Mol Biol, Portland, OR 97291 USA
关键词
D O I
10.1021/bi973004y
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The bifunctional peptidylglycine alpha-amidating enzyme catalyzes the C-terminal amidation of glycine-extended peptides, The first enzyme activity, peptidylglycine alpha-hydroxylating monooxygenase, catalyzes the oxygen-, ascorbate-, and copper-dependent formation of alpha-hydroxyglycine derivatives. These are substrates for the second enzyme activity, peptidylamidoglycolate lyase, which catalyzes their breakdown to the corresponding C-terminal amidated peptide and glyoxylate as final products. Kinetic and isotope effect studies were carried out with N-benzoylglycine as a substrate at pH 6.0 using monofunctional and bifunctional monooxygenase activities. Kinetic data indicate an equilibrium ordered mechanism, with hippuric acid binding first followed by oxygen. A potentially important difference between the two monooxygenase activities is that product release occurs more slowly from the bifunctional enzyme, indicating an influence of the lyase domain on release of alpha-hydroxyglycine product to solution. Intrinsic isotope effects for the C-H bond cleavage were measured for the monofunctional form of the enzyme using a double-label tracer method, yielding 10.6 +/- 0.8 and 1.20 +/- 0.03 for the primary and alpha-secondary deuterium intrinsic isotope effects, respectively. These values are identical to previous measurements for the analogous enzyme system, dopamine beta-monooxygenase [Miller, S. M., and Klinman, J. P. (1985) Biochemistry 24, 2114-2127]. The identity of intrinsic isotope effects for peptidylglycine alpha-hydroxylating monooxygenase and dopamine beta-monooxygenase with substrates of comparable reactivity (N-benzoylglycine and dopamine, respectively) extends similarities between the two enzymes significantly beyond sequence homology and cofactor requirements.
引用
收藏
页码:8244 / 8252
页数:9
相关论文
共 59 条