A family of simultaneous confidence intervals for multinomial proportions

被引:14
作者
Hou, CD
Chiang, JT
Tai, JJ
机构
[1] Fu Jen Catholic Univ, Dept Stat, Taipei Hsien, Taiwan
[2] Natl Chengchi Univ, Dept Stat, Taipei 11623, Taiwan
[3] Natl Taiwan Univ, Div Biostat, Inst Epidemiol, Taipei 100, Taiwan
关键词
coverage probability; Monte-Carlo method; power-divergence statistic; simultaneous confidence intervals; sparse data;
D O I
10.1016/S0167-9473(02)00169-X
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A family of simultaneous confidence intervals (SCIs) for multinomial proportions is proposed by inverting the power-divergence statistics and the best SCIs in the family is determined, by Monte-Carlo technique. Numerical comparisons of this method with the other alternatives are presented. Simulation results indicate that the new procedure is preferable to all its competitors in most cases. (C) 2003 Elsevier Science B.V, All rights reserved.
引用
收藏
页码:29 / 45
页数:17
相关论文
共 13 条
[1]  
Angers C, 1984, SIMULATION OCT, P175
[3]  
CRESSIE N, 1984, J ROY STAT SOC B MET, V46, P440
[4]  
CRESSIE NAC, 1988, GOODNESS OF FIT STAT
[5]   QUICK SIMULTANEOUS CONFIDENCE-INTERVALS FOR MULTINOMIAL PROPORTIONS [J].
FITZPATRICK, S ;
SCOTT, A .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1987, 82 (399) :875-878
[6]   PROBABILITY-INEQUALITIES FOR MULTIVARIATE DISTRIBUTIONS WITH DEPENDENCE STRUCTURES [J].
GLAZ, J ;
JOHNSON, BM .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1984, 79 (386) :436-440
[7]   ON SIMULTANEOUS CONFIDENCE INTERVALS FOR MULTINOMIAL PROPORTIONS [J].
GOODMAN, LA .
TECHNOMETRICS, 1965, 7 (02) :247-&
[8]   Testing the nonrandomness of chromosomal breakpoints using highest observed breakages [J].
Hou, CD ;
Chiang, JT ;
Tai, JJ .
HUMAN GENETICS, 1999, 104 (04) :350-355
[9]   Identifying chromosomal fragile sites from a hierarchical-clustering point of view [J].
Hou, CD ;
Chiang, JT ;
Tai, JJ .
BIOMETRICS, 2001, 57 (02) :435-440
[10]   SAMPLE SIZES AND CONFIDENCE INTERVALS ASSOCIATED WITH A MONTE CARLO SIMULATION MODEL POSSESSING A MULTINOMIAL OUTPUT [J].
HURTUBISE, RA .
SIMULATION, 1969, 12 (02) :71-+