Protein kinase C signaling and oxidative stress

被引:587
作者
Gopalakrishna, R
Jaken, S [1 ]
机构
[1] Univ Vermont, Coll Med, Dept Pathol, Burlington, VT 05405 USA
[2] Univ So Calif, Keck Sch Med, Dept Cell & Neurobiol, Los Angeles, CA USA
关键词
protein kinase C; oxidants; antioxidants; zinc-fingers; redox regulations; tumor promotion; cancer prevention; free radicals;
D O I
10.1016/S0891-5849(00)00221-5
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Oxidative stress is involved in the pathogenesis of various degenerative diseases including cancer. It is now recognized that low levels of oxidants can modify cell-signaling proteins and that these modifications have functional consequences. Identifying the target proteins for redox modification is key to understanding how oxidants mediate pathological processes such as tumor promotion. These proteins are also likely to be important targets for chemopreventive antioxidants, which are known to block signaling induced by oxidants and to induce their own actions. Various antioxidant preventive agents also inhibit PKC-dependent cellular responses. Therefore, PKC is a logical candidate for redox modification by oxidants and antioxidants that may in part determine their cancer-promoting and anticancer activities, respectively. PKCs contain unique structural features that are susceptible to oxidative modification. The N-terminal regulatory domain contains zinc-binding, cysteine-rich motifs that are: readily oxidized by peroxide. When oxidized, the autoinhibitory function of the regulatory domain is compromised and, consequently, cellular PKC activity is stimulated. The C-terminal catalytic domain contains several reactive cysteines that are targets for various chemopreventive antioxidants such as selenocompounds, polyphenolic agents such as curcumin, and vitamin E analogues. Modification of these cysteines decreases cellular PKC activity. Thus the two domains of PKC respond differently to two different type of agents: oxidants selectively react with the regulatory domain, stimulate cellular PKC, and signal for tumor promotion and cell growth. In contrast, antioxidant chemopreventive agents react with the catalytic domain, inhibit cellular PKC activity, and thus interfere with the action of tumor promoters. (C) 2000 Elsevier Science Inc.
引用
收藏
页码:1349 / 1361
页数:13
相关论文
共 140 条
  • [1] REDOX REGULATION OF FOS AND JUN DNA-BINDING ACTIVITY INVITRO
    ABATE, C
    PATEL, L
    RAUSCHER, FJ
    CURRAN, T
    [J]. SCIENCE, 1990, 249 (4973) : 1157 - 1161
  • [2] UV IRRADIATION AND HEAT-SHOCK MEDIATE JNK ACTIVATION VIA ALTERNATE PATHWAYS
    ADLER, V
    SCHAFFER, A
    KIM, J
    DOLAN, L
    RONAI, Z
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (44) : 26071 - 26077
  • [3] REACTION OF CHROMIUM(VI) WITH GLUTATHIONE OR WITH HYDROGEN-PEROXIDE - IDENTIFICATION OF REACTIVE INTERMEDIATES AND THEIR ROLE IN CHROMIUM(VI)-INDUCED DNA DAMAGE
    AIYAR, J
    BERKOVITS, HJ
    FLOYD, RA
    WETTERHAHN, KE
    [J]. ENVIRONMENTAL HEALTH PERSPECTIVES, 1991, 92 : 53 - 62
  • [4] COPPER ION-MEDIATED MODIFICATION OF BASES IN DNA IN-VITRO BY BENZOYL PEROXIDE
    AKMAN, SA
    KENSLER, TW
    DOROSHOW, JH
    DIZDAROGLU, M
    [J]. CARCINOGENESIS, 1993, 14 (09) : 1971 - 1974
  • [5] AMSTAD PA, 1992, CANCER RES, V52, P3952
  • [6] SEPARATION OF OXIDANT-INITIATED AND REDOX-REGULATED STEPS IN THE NF-KAPPA-B SIGNAL-TRANSDUCTION PATHWAY
    ANDERSON, MT
    STAAL, FJT
    GITLER, C
    HERZENBERG, LA
    HERZENBERG, LA
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (24) : 11527 - 11531
  • [7] Epidermal growth factor (EGF)-induced generation of hydrogen peroxide - Role in EGF receptor-mediated tyrosine phosphorylation
    Bae, YS
    Kang, SW
    Seo, MS
    Baines, IC
    Tekle, E
    Chock, PB
    Rhee, SG
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (01) : 217 - 221
  • [8] BELL RM, 1991, J BIOL CHEM, V266, P4661
  • [9] BERTRAM JS, 1987, CANCER RES, V47, P3012
  • [10] COMPLEXITIES OF THE PROTEIN-KINASE-C PATHWAY
    BLUMBERG, PM
    [J]. MOLECULAR CARCINOGENESIS, 1991, 4 (05) : 339 - 344