Are genetic polymorphisms in OGG1, XRCC1 and XRCC3 genes predictive for the DNA strand break repair phenotype and genotoxicity in workers exposed to low dose ionising radiations?

被引:97
作者
Aka, P
Mateuca, R
Buchet, JP
Thierens, H
Kirsch-Volders, M
机构
[1] Free Univ Brussels, Lab Cell Genet, Dept Biol, B-1050 Brussels, Belgium
[2] Catholic Univ Louvain, Unit Ind Toxicol & Occupat Med, B-1200 Brussels, Belgium
[3] State Univ Ghent, Dept Biomed Phys & Radiat Protect, B-9000 Ghent, Belgium
关键词
genetic polymorphisms; DNA repair genes; repair phenotype;
D O I
10.1016/j.mrfmmm.2004.08.002
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Identification of higher risk individuals carrying genetic polymorphisms responsible for reduced DNA repair capacity has substantial preventive implications as these individuals could be targeted for cancer prevention. We have conducted a study to assess the predictivity of the OGG1, XRCC1 and XRCC3 genotypes and the in vitro single strand break repair phenotype for the induction of genotoxic effects. At the population level, a significant contribution of the OGG1 genotypes to the in vitro DNA strand break repair capacity was found. At an individual level, the OGG1 variants Ser/Cys and Cys/Cys genotypes showed a slower in vitro DNA repair than the Ser/Ser OGG1 genotype. A multivariate analysis performed with genotypes, age, cumulative dose, exposure status and smoking as independent variables indicated that in the control population, repair capacity is influenced by age and OGG1 polymorphisms. In the exposed population, DNA damage is greater in older men and in smokers. Repair capacity is slower in individuals with Ser/Cys or Cys/Cys OGG1 genotypes compared to those with the Ser/Ser OGG1 genotype. Micronuclei (MN) frequencies increased with age and the cumulative dose of gamma-rays. Analysis of the total population revealed that genetic polymorphisms in XRCC1 resulted in higher residual DNA (RDNA) values and the Met/Met variant of XRCC3 resulted in an increased frequency of micronuclei. The analysis confirms that MN frequencies are reliable biomarkers for the assessment of genetic effects in workers exposed to ionising radiation (IR). A combined analysis of the three genotypes, OGG1, XRCC1 and XRCC3 polymorphisms is advised in order to assess individual susceptibility to ionising radiation. As an alternative or complement, the in vitro DNA strand break repair phenotype which integrates several repair pathways is recommended. Smokers with OGG1 polymorphisms who are exposed to ionising radiation represent a specific population requiring closer medical surveillance because of their increased mutagenic/carcinogenic risk. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:169 / 181
页数:13
相关论文
共 50 条
[1]   Measures of genotype versus gene products: promise and pitfalls in cancer prevention [J].
Ahsan, H ;
Rundle, AG .
CARCINOGENESIS, 2003, 24 (09) :1429-1434
[2]   Use of the alkaline comet assay to detect DNA repair deficiencies in human fibroblasts exposed to UVC, UVB, UVA and gamma-rays [J].
Alapetite, C ;
Wachter, T ;
Sage, E ;
Moustachi, E .
INTERNATIONAL JOURNAL OF RADIATION BIOLOGY, 1996, 69 (03) :359-369
[3]   Variant XRCC3 implicated in cancer is functional in homology-directed repair of double-strand breaks [J].
Araujo, FD ;
Pierce, AJ ;
Stark, JM ;
Jasin, M .
ONCOGENE, 2002, 21 (26) :4176-4180
[4]   INVESTIGATION OF ANTIOXIDANT STATUS, DNA-REPAIR CAPACITY AND MUTATION AS A FUNCTION OF AGE IN HUMANS [J].
BARNETT, YA ;
KING, CM .
MUTATION RESEARCH-DNAGING GENETIC INSTABILITY AND AGING, 1995, 338 (1-6) :115-128
[5]  
Berwick M, 2000, Forum (Genova), V10, P191
[6]   Induction of DNA polymerase β-dependent base excision repair in response to oxidative stress in vivo [J].
Cabelof, DC ;
Raffoul, JJ ;
Yanamadala, S ;
Guo, ZM ;
Heydari, AR .
CARCINOGENESIS, 2002, 23 (09) :1419-1425
[7]   Mutations in OGG1, a gene involved in the repair of oxidative DNA damage, are found in human lung and kidney tumours [J].
Chevillard, S ;
Radicella, JP ;
Levalois, C ;
Lebeau, J ;
Poupon, MF ;
Oudard, S ;
Dutrillaux, B ;
Boiteux, S .
ONCOGENE, 1998, 16 (23) :3083-3086
[8]   Validation and implementation of an internal standard in comet assay analysis [J].
De Boeck, M ;
Touil, N ;
De Visscher, G ;
Vande, PA ;
Kirsch-Volders, M .
MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS, 2000, 469 (02) :181-197
[9]   Excision of oxidatively damaged DNA bases by the human α-hOgg1 protein and the polymorphic α-hOgg1(Ser326Cys) protein which is frequently found in human populations [J].
Dherin, C ;
Radicella, JP ;
Dizdaroglu, M ;
Boiteux, S .
NUCLEIC ACIDS RESEARCH, 1999, 27 (20) :4001-4007
[10]   The XRCC1 399 glutamine allele is a risk factor for adenocarcinoma of the lung [J].
Divine, KK ;
Gilliland, FD ;
Crowell, RE ;
Stidley, CA ;
Bocklage, TJ ;
Cook, DL ;
Belinsky, SA .
MUTATION RESEARCH-DNA REPAIR, 2001, 461 (04) :273-278