3-coloring in time O(1.3289n)

被引:88
作者
Beigel, R
Eppstein, D [1 ]
机构
[1] Univ Calif Irvine, Donald Bren Sch Informat & Comp Sci, Irvine, CA 92697 USA
[2] Univ Illinois, Dept Elect Engn & Comp Sci, Chicago, IL 60607 USA
来源
JOURNAL OF ALGORITHMS-COGNITION INFORMATICS AND LOGIC | 2005年 / 54卷 / 02期
基金
美国国家科学基金会;
关键词
D O I
10.1016/j.jalgor.2004.06.008
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We consider worst case time bounds for several NP-complete problems, based on a constraint satisfaction (CSP) formulation of these problems: (a, b)-CSP instances consist of a set of variables, each with up to a possible values, and constraints disallowing certain b-tuples of variable values; a problem is solved by assigning values to all variables satisfying all constraints, or by showing that no such assignment exist. 3-SAT is equivalent to (2, 3)-CSP while 3-coloring and various related problems are special cases of (3, 2)-CSP; there is also a natural duality transformation from (a, b)-CSP to (b, a)-CSP. We show that n-variable (3, 2)-CSP instances can be solved in time O(1.3645(n)), that satisfying assignments to (d, 2)-CSP instances can be found in randomized expected time O((0.4518d)(n)); that 3-coloring of n-vertex graphs can be solved in time O(1.3289(n)); that 3-list-coloring of n-vertex graphs can be solved in time O(1.3645(n)); that 3-edge-coloring of n-vertex graphs can be solved in time O(2(n/2)), and that 3-satisfiability of a formula with t 3-clauses can be solved in time O(n(O(1)) + 1.3645(t)). (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:168 / 204
页数:37
相关论文
共 36 条
[1]   A spectral technique for coloring random 3-colorable graphs [J].
Alon, N ;
Kahale, N .
SIAM JOURNAL ON COMPUTING, 1997, 26 (06) :1733-1748
[2]  
[Anonymous], PROBABILISTIC ALGORI
[3]  
Beigel R., 1995, Proceedings. 36th Annual Symposium on Foundations of Computer Science (Cat. No.95CB35834), P444, DOI 10.1109/SFCS.1995.492575
[4]  
Beigel R., 1999, P 10 ACM SIAM S DISC, pS856
[5]   An (O)over-tilda(n(3/14))-coloring algorithm for 3-colorable graphs [J].
Blum, A ;
Karger, D .
INFORMATION PROCESSING LETTERS, 1997, 61 (01) :49-53
[6]  
Byskov JM, 2003, SIAM PROC S, P456
[7]  
BYSKOV JM, 2002, RS0245 CTR BAS RES C
[8]  
CHEN J, 1999, LECT NOTES COMPUTER, V1665, P313
[9]  
DANTSIN E, 12000 STEKL I MATH
[10]  
DANTSIN E, 1983, J SOVIET MATH, V22, P1293