Controlling alginate gel degradation utilizing partial oxidation and bimodal molecular weight distribution

被引:510
作者
Boontheekul, T
Kong, HJ
Mooney, DJ [1 ]
机构
[1] Univ Michigan, Dept Chem Engn, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Biomed Engn, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Dept Biol & Mat Sci, Ann Arbor, MI 48109 USA
关键词
tissue engineering; chain scission; calcium cross-linking; myoblasts; biocompatibility;
D O I
10.1016/j.biomaterials.2004.06.044
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Degradability is often a critical property of materials utilized in tissue engineering. Although alginate, a naturally derived polysaccharide, is an attractive material due to its biocompatibility and ability to form hydrogels, its slow and uncontrollable degradation can be an undesirable feature. In this study, we characterized gels formed using a combination of partial oxidation of polymer chains and a bimodal molecular weight distribution of polymer. Specifically, alginates were partially oxidized to a theoretical extent of 1% with sodium periodate, which created acetal groups susceptible to hydrolysis. The ratio of low MW to high MW alginates used to form gels was also varied, while maintaining the gel forming ability of the polymer. The rate of degradation was found to be controlled by both the oxidation and the ratio of high to low MW alginates, as monitored by the reduction of mechanical properties and corresponding number of crosslinks, dry weight loss, and molecular weight decrease. It was subsequently examined whether these modifications would lead to reduced biocompatibility by culturing C2C12 myoblast on these gels. Myoblasts adhered, proliferated, and differentiated on the modified gels at a comparable rate as those cultured on the unmodified gels. Altogether, this data indicates these hydrogels exhibit tunable degradation rates and provide a powerful material system for tissue engineering. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2455 / 2465
页数:11
相关论文
共 32 条
  • [1] Regulating bone formation via controlled scaffold degradation
    Alsberg, E
    Kong, HJ
    Hirano, Y
    Smith, MK
    Albeiruti, A
    Mooney, DJ
    [J]. JOURNAL OF DENTAL RESEARCH, 2003, 82 (11) : 903 - 908
  • [2] Engineering growing tissues
    Alsberg, E
    Anderson, KW
    Albeiruti, A
    Rowley, JA
    Mooney, DJ
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (19) : 12025 - 12030
  • [3] Myogenin expression, cell cycle withdrawal, and phenotypic differentiation are temporally separable events that precede cell fusion upon myogenesis
    Andres, V
    Walsh, K
    [J]. JOURNAL OF CELL BIOLOGY, 1996, 132 (04) : 657 - 666
  • [4] Mechanical properties of hydrogels and their experimental determination
    Anseth, KS
    Bowman, CN
    BrannonPeppas, L
    [J]. BIOMATERIALS, 1996, 17 (17) : 1647 - 1657
  • [5] Flexible substrata for the detection of cellular traction forces
    Beningo, KA
    Wang, YL
    [J]. TRENDS IN CELL BIOLOGY, 2002, 12 (02) : 79 - 84
  • [6] Degradation of partially oxidized alginate and its potential application for tissue engineering
    Bouhadir, KH
    Lee, KY
    Alsberg, E
    Damm, KL
    Anderson, KW
    Mooney, DJ
    [J]. BIOTECHNOLOGY PROGRESS, 2001, 17 (05) : 945 - 950
  • [7] Synthesis of cross-linked poly(aldehyde guluronate) hydrogels
    Bouhadir, KH
    Hausman, DS
    Mooney, DJ
    [J]. POLYMER, 1999, 40 (12) : 3575 - 3584
  • [8] REGULATION OF CREATINE-KINASE INDUCTION IN DIFFERENTIATING MOUSE MYOBLASTS
    CHAMBERLAIN, JS
    JAYNES, JB
    HAUSCHKA, SD
    [J]. MOLECULAR AND CELLULAR BIOLOGY, 1985, 5 (03) : 484 - 492
  • [9] CHIN JA, 1991, BIOMEDICAL ENG HDB, P1597
  • [10] The tensile properties of alginate hydrogels
    Drury, JL
    Dennis, RG
    Mooney, DJ
    [J]. BIOMATERIALS, 2004, 25 (16) : 3187 - 3199