A rigorous mathematical proof of the area method for phase stability

被引:15
作者
Elhassan, AE
Tsvetkov, SG
Craven, RJB
Stateva, RP
Wakeham, WA [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Chem Engn & Chem Technol, IUPAC Thermodynam Tables Project Ctr, London SW7 2BY, England
[2] Bulgarian Acad Sci, Inst Chem Engn, Sofia 1113, Bulgaria
关键词
D O I
10.1021/ie970265v
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The paper introduces new developments of the original AREA method. A rigorous mathematical proof that the equilibrium points are the only ones which satisfy the maximum AREA criterion in the case of a two-component, two-phase system is given for the first time. A rigorous proof that the maximum AREA criterion is a necessary but not a sufficient condition for equilibrium in the case of an N-component, two-phase system is given also for the first time in the paper. Two test examples which reinforce the validity of the theoretical results obtained are presented and discussed.
引用
收藏
页码:1483 / 1489
页数:7
相关论文
共 12 条
[1]   GIBBS ENERGY ANALYSIS OF PHASE-EQUILIBRIA [J].
BAKER, LE ;
PIERCE, AC ;
LUKS, KD .
SOCIETY OF PETROLEUM ENGINEERS JOURNAL, 1982, 22 (05) :731-742
[2]   Solution of the multiphase equilibrium problem for pure component, binary and ternary systems using the area method [J].
Elhassan, AE ;
Lopez, AA ;
Craven, RJB .
JOURNAL OF THE CHEMICAL SOCIETY-FARADAY TRANSACTIONS, 1996, 92 (22) :4419-4433
[3]   AREA METHOD FOR PREDICTION OF FLUID-PHASE EQUILIBRIA [J].
EUBANK, PT ;
ELHASSAN, AE ;
BARRUFET, MA ;
WHITING, WB .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 1992, 31 (03) :942-949
[4]  
Gibbs JW, 1873, Trans. Conn. Acad. Arts Sci, P382, DOI DOI 10.1093/NQ/S4-XII.307.382
[5]   Reliable prediction of phase stability using an interval Newton method [J].
Hua, JZ ;
Brennecke, JF ;
Stadtherr, MA .
FLUID PHASE EQUILIBRIA, 1996, 116 (1-2) :52-59
[6]   GLOBAL OPTIMIZATION AND ANALYSIS FOR THE GIBBS FREE-ENERGY FUNCTION USING THE UNIFAC, WILSON, AND ASOG EQUATIONS [J].
MCDONALD, C ;
FLOUDAS, CA .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 1995, 34 (05) :1674-1687
[7]  
McDonald CM, 1997, COMPUT CHEM ENG, V21, P1, DOI 10.1016/0098-1354(95)00250-2
[8]   GLOBAL OPTIMIZATION FOR THE PHASE-STABILITY PROBLEM [J].
MCDONALD, CM ;
FLOUDAS, CA .
AICHE JOURNAL, 1995, 41 (07) :1798-1814
[9]  
MCDONALD CM, 1995, COMPUT CHEM ENG, V19, P111
[10]   THE ISOTHERMAL FLASH PROBLEM .1. STABILITY [J].
MICHELSEN, ML .
FLUID PHASE EQUILIBRIA, 1982, 9 (01) :1-19