Identification of a functional link for the p53 tumor suppressor protein in dexamethasone-induced growth suppression

被引:45
作者
Urban, G
Golden, T
Aragon, IV
Cowsert, L
Cooper, SR
Dean, NM
Honkanen, RE
机构
[1] Univ S Alabama, Dept Biochem & Mol Biol, Mobile, AL 36688 USA
[2] ISIS Pharmaceut, Dept Pharmacol, Carlsbad, CA 92008 USA
关键词
D O I
10.1074/jbc.M210993200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Serine/threonine phosphatase 5 (PP5) can act as a suppresser of p53-dependent growth suppression and has been reported to associate with several proteins, including the glucocorticoid receptor/heat-shock protein-90 complex. Still, the physiological/pathological roles of PP5 are unclear. To characterize the relationship of PP5, glueocorticoid receptor activation and p53, here we describe the development of chimeric antisense oligonucleotides that potently inhibit human p53 expression. This allowed us to regulate the expression of either p53 (e.g. with ISIS 110332) or PP5 (e.g. with ISIS 15534) in genetically identical cells. Studies with ISIS 110332 revealed that the suppression of p53 expression is associated with a decrease in the basal expression of the cyclin-dependent kinase inhibitor protein, p21(WAF1/Cip1), and a concomitant increase in the rate of cell proliferation. Suppression of p53 also blocks dexamethasone-induced w21(WAF1/Cip1) expression and G,growth arrest. Furthermore, treatment with ISIS 110332, but not the mismatched controls, ablates the suppression of growth produced by prior treatment with dexamethasone. Additional studies revealed that dexamethasone-dependent p21(WAF1/Cip1) expression occurs without an apparent change in p53 protein levels or the phosphorylation status of p53 at Ser-6, -37, or -392. However, dexamethasone treatment is associated with an increase in p53 phosphorylation at Ser-15. Suppression of PP5 expression with ISIS 15534 also results in the hyperphosphorylation of p53 at Ser-15. Together, these findings indicate that the basal expression of p53 plays a functional role in a glucocorticoid receptor-mediated response regulating the expression of p21(Waf1/Cip1) via a mechanism that is suppressed by PP5 and associated with the phosphorylation of p53 at Ser-15.
引用
收藏
页码:9747 / 9753
页数:7
相关论文
共 48 条
[1]   The p53 network [J].
Agarwal, ML ;
Taylor, WR ;
Chernov, MV ;
Chernova, OB ;
Stark, GR .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (01) :1-4
[2]   P53 CONTROLS BOTH THE G(2)/M AND THE G(1) CELL-CYCLE CHECKPOINTS AND MEDIATES REVERSIBLE GROWTH ARREST IN HUMAN FIBROBLASTS [J].
AGARWAL, ML ;
AGARWAL, A ;
TAYLOR, WR ;
STARK, GR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (18) :8493-8497
[3]   Regulation of p53 stability [J].
Ashcroft, M ;
Vousden, KH .
ONCOGENE, 1999, 18 (53) :7637-7643
[4]   Phosphorylation of serines 15 and 37 is necessary for efficient accumulation of p53 following irradiation with UV [J].
Bean, LJH ;
Stark, GR .
ONCOGENE, 2001, 20 (09) :1076-1084
[5]  
BENNETT CF, 1992, MOL PHARMACOL, V41, P1023
[6]   Comparative study of the p53-mdm2 and p53-MDMX interfaces [J].
Böttger, V ;
Böttger, A ;
Garcia-Echeverria, C ;
Ramos, YFM ;
van der Eb, AJ ;
Jochemsen, AG ;
Lane, DP .
ONCOGENE, 1999, 18 (01) :189-199
[7]   Drosophila protein phosphatase 5 is encoded by a single gene that is most highly expressed during embryonic development [J].
Brown, L ;
Borthwick, EB ;
Cohen, PTW .
BIOCHIMICA ET BIOPHYSICA ACTA-GENE STRUCTURE AND EXPRESSION, 2000, 1492 (2-3) :470-476
[8]   Glucocorticoids stimulate p21 gene expression by targeting multiple transcriptional elements within a steroid responsive region of the p21waf1/cip1 promoter in rat hepatoma cells [J].
Cha, HH ;
Cram, EJ ;
Wang, EC ;
Huang, AJ ;
Kasler, HG ;
Firestone, GL .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (04) :1998-2007
[9]   The tetratricopeptide repeat domain of protein phosphatase 5 mediates binding to glucocorticoid receptor heterocomplexes and acts as a dominant negative mutant [J].
Chen, MS ;
Silverstein, AM ;
Pratt, WB ;
Chinkers, M .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (50) :32315-32320
[10]   Activation of protein phosphatase 5 by limited proteolysis or the binding of polyunsaturated fatty acids to the TPR domain [J].
Chen, MX ;
Cohen, PTW .
FEBS LETTERS, 1997, 400 (01) :136-140