Oriented single-crystalline TiO2 nanowires on titanium foil for lithium ion batteries

被引:34
作者
Liu, Bin [1 ]
Deng, Da [2 ]
Lee, Jim Yang [2 ]
Aydil, Eray S. [1 ]
机构
[1] Univ Minnesota, Dept Chem Engn & Mat Sci, Minneapolis, MN 55455 USA
[2] Natl Univ Singapore, Fac Engn, Dept Chem & Biomol Engn, Singapore 119260, Singapore
基金
美国国家科学基金会;
关键词
HIGH-CAPACITY; ELECTROCHEMICAL PROPERTIES; TEMPLATE SYNTHESIS; PARTICLE-SIZE; HIGH-POWER; NANOTUBES; ANATASE; STORAGE; PERFORMANCE; ELECTRODES;
D O I
10.1557/JMR.2010.0204
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A simple and environmentally benign three-step hydrothermal method was developed for growing oriented single-crystalline TiO2-B and/or anatase TiO2 nanowire arrays on titanium foil over large areas. These nanowire arrays are suitable for use as the anode in lithium ion batteries; they exhibit specific capacities ranging from 200-250 mAh/g at charge-discharge rates of 0.3 C where 1 C is based on the theoretical capacity of 168 mAh/g. Batteries retain this capacity over as many as 200 charge-discharge cycles. Even at high charge-discharge rates of 0.9 C and 1.8 C, the specific capacities were 150 mAh/g and 120 mAh/g, respectively. These promising properties are attributed to both the nanometer size of the nanowires and their oriented alignment. The comparable electrochemical performance to existing technology, improved safety, and the ability to roll titanium foils into compact three-dimensional structures without additional substrates, binders, or additives suggest that these TiO2 nanowires on titanium foil are promising anode materials for large-scale energy storage.
引用
收藏
页码:1588 / 1594
页数:7
相关论文
共 44 条
[1]   TiO2-B nanowires [J].
Armstrong, AR ;
Armstrong, G ;
Canales, J ;
Bruce, PG .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2004, 43 (17) :2286-2288
[2]   Lithium-ion intercalation into TiO2-B nanowires [J].
Armstrong, AR ;
Armstrong, G ;
Canales, J ;
García, R ;
Bruce, PG .
ADVANCED MATERIALS, 2005, 17 (07) :862-+
[3]   TiO2(B) nanotubes as negative electrodes for rechargeable lithium batteries [J].
Armstrong, G ;
Armstrong, AR ;
Canales, J ;
Bruce, PG .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2006, 9 (03) :A139-A143
[4]   Growth mechanism of titanium dioxide nanowires for dye-sensitized solar cells [J].
Boercker, J. E. ;
Enache-Pommer, E. ;
Aydil, E. S. .
NANOTECHNOLOGY, 2008, 19 (09)
[5]   Impact of nanosizing on lithiated rutile TiO2 [J].
Borghols, Wouter J. H. ;
Wagemaker, Marnix ;
Lafont, Ugo ;
Kelder, Erik M. ;
Mulder, Fokko M. .
CHEMISTRY OF MATERIALS, 2008, 20 (09) :2949-2955
[6]   Nanomaterials for rechargeable lithium batteries [J].
Bruce, Peter G. ;
Scrosati, Bruno ;
Tarascon, Jean-Marie .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (16) :2930-2946
[7]   High capacity Li ion battery anodes using Ge nanowires [J].
Chan, Candace K. ;
Zhang, Xiao Feng ;
Cui, Yi .
NANO LETTERS, 2008, 8 (01) :307-309
[8]   High-performance lithium battery anodes using silicon nanowires [J].
Chan, Candace K. ;
Peng, Hailin ;
Liu, Gao ;
McIlwrath, Kevin ;
Zhang, Xiao Feng ;
Huggins, Robert A. ;
Cui, Yi .
NATURE NANOTECHNOLOGY, 2008, 3 (01) :31-35
[9]   Chemical-vapor deposition-based template synthesis of microtubular TiS2 battery electrodes [J].
Che, G ;
Jirage, KB ;
Fisher, ER ;
Martin, CR ;
Yoneyama, H .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1997, 144 (12) :4296-4302
[10]   Carbon nanotubule membranes for electrochemical energy storage and production [J].
Che, GL ;
Lakshmi, BB ;
Fisher, ER ;
Martin, CR .
NATURE, 1998, 393 (6683) :346-349