共 39 条
One-Step Synthesis of Hierarchical SnO2 Hollow Nanostructures via Self-Assembly for High Power Lithium Ion Batteries
被引:261
作者:
Yin, Xiao Ming
Li, Cheng Chao
Zhang, Ming
Hao, Quan Yi
Liu, Shuang
Chen, Li Bao
Wang, Tai Hong
[1
]
机构:
[1] Hunan Univ, Minist Educ, Key Lab Micronano Optoelect Devices, Changsha 410082, Hunan, Peoples R China
基金:
中国国家自然科学基金;
关键词:
ELECTROCHEMICAL PROPERTIES;
HYDROTHERMAL SYNTHESIS;
GENERALIZED SYNTHESIS;
ANODE MATERIAL;
NANOPARTICLES;
SPHERES;
MICROSPHERES;
MORPHOLOGY;
NANOWIRES;
COMPOSITE;
D O I:
10.1021/jp100224x
中图分类号:
O64 [物理化学(理论化学)、化学物理学];
学科分类号:
070304 ;
081704 ;
摘要:
This paper reported a simple template-free route to prepare hierarchical SnO2 nanostructures with hollow interiors. These high porous architectures, with the diameter about 200 nm, were assembled by nanosheets. Time-dependent experiments illustrated that these hierarchical and hollow nanostructures were transformed from solid SnO2 spheres composed of nanoparticles. Furthermore, the hierarchical SnO2 manifested high capacities and excellent cycle performances as the anode materials for lithium ion batteries, which can deliver a reversible capacity of 545 mA h g(-1) up to 50 cycles. Even at high rates, the electrode exhibited excellent properties; the reversible capacities were about 590 and 460 mA h g(-1) at the rate of 1.6 and 10 C. The improved electrochemical properties could be ascribed to the large surface area, enhanced structure stability, and short diffusion length for both lithium ion and electron.
引用
收藏
页码:8084 / 8088
页数:5
相关论文