Expectation values of local fields in the Bullough-Dodd model and integrable perturbed conformal field theories

被引:107
作者
Fateev, V
Lukyanov, S
Zamolodchikov, A
Zamolodchikov, A
机构
[1] Univ Montpellier 2, Phys Math Lab, F-34095 Montpellier, France
[2] LD Landau Theoret Phys Inst, Chernogolovka 142432, Russia
[3] Cornell Univ, Newman Lab, Ithaca, NY 14853 USA
[4] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08855 USA
基金
美国国家科学基金会;
关键词
integrable quantum field theory; conformal perturbation theory; vacuum expectation values;
D O I
10.1016/S0550-3213(98)00002-9
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Exact expectation values of the fields e(alpha phi) in the Bullough-Dodd model are derived by adopting the "reflection relations" which involve the reflection S-matrix of the Liouville theory, as well as a special analyticity assumption, Using this result we propose explicit expressions far expectation values of all primary operators in the c < 1 minimal CFT perturbed by the operator Phi(1,2) or Phi(2,1). Some results concerning the Phi(1,5) perturbed minimal models are also presented. (C) 1998 Elsevier Science B.V.
引用
收藏
页码:652 / 674
页数:23
相关论文
共 34 条
[1]   Form factors of exponential operators and exact wave function renormalization constant in the Bullough-Dodd model [J].
Acerbi, C .
NUCLEAR PHYSICS B, 1997, 497 (03) :589-610
[2]   QUANTUM S-MATRIX OF THE (1+1)-DIMENSIONAL TODD CHAIN [J].
ARINSHTEIN, AE ;
FATEYEV, VA ;
ZAMOLODCHIKOV, AB .
PHYSICS LETTERS B, 1979, 87 (04) :389-392
[3]  
Baxter R. J., 2007, EXACTLY SOLVED MODEL
[4]   INFINITE CONFORMAL SYMMETRY IN TWO-DIMENSIONAL QUANTUM-FIELD THEORY [J].
BELAVIN, AA ;
POLYAKOV, AM ;
ZAMOLODCHIKOV, AB .
NUCLEAR PHYSICS B, 1984, 241 (02) :333-380
[5]   RESIDUAL QUANTUM SYMMETRIES OF THE RESTRICTED SINE-GORDON THEORIES [J].
BERNARD, D ;
LECLAIR, A .
NUCLEAR PHYSICS B, 1990, 340 (2-3) :721-751
[6]  
BRAZHNIKOV V, RU9758
[7]  
DODD RK, 1977, P ROY SOC LOND A MAT, V352, P481, DOI 10.1098/rspa.1977.0012
[8]   Expectation values of boundary fields in the boundary sine-Gordon model [J].
Fateev, V ;
Lukyanov, S ;
Zamolodchikov, A ;
Zamolodchikov, A .
PHYSICS LETTERS B, 1997, 406 (1-2) :83-88
[9]   THE EXACT RELATIONS BETWEEN THE COUPLING-CONSTANTS AND THE MASSES OF PARTICLES FOR THE INTEGRABLE PERTURBED CONFORMAL FIELD-THEORIES [J].
FATEEV, VA .
PHYSICS LETTERS B, 1994, 324 (01) :45-51
[10]   FURTHER EXACT-SOLUTIONS OF THE 8-VERTEX SOS MODEL AND GENERALIZATIONS OF THE ROGERS-RAMANUJAN IDENTITIES [J].
FORRESTER, PJ ;
BAXTER, RJ .
JOURNAL OF STATISTICAL PHYSICS, 1985, 38 (3-4) :435-472