Lyapunov graph continuation

被引:13
作者
Bertolim, MA [1 ]
Mello, MP
De Rezende, KA
机构
[1] Univ Sao Paulo, Inst Ciencias Matemat & Computacao, Sao Carlos, SP, Brazil
[2] Univ Estadual Campinas, Inst Matemat Estatist & Computacao Cientif, Campinas, SP, Brazil
关键词
D O I
10.1017/S014338570200086X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper the Poincare-Hopf inequalities are shown to be necessary and sufficient conditions for an abstract Lyapunov graph L to be continued to an abstract Lyapunov graph of Morse type. The Lyapunov graphs considered may represent smooth flows on closed orientable n-manifolds, n greater than or equal to 2. The continuation which is presented by means of a constructive algorithm, is shown to be unique in dimensions two and three. In all other dimensions, the exact number of possible continuations of L are presented.
引用
收藏
页码:1 / 58
页数:58
相关论文
共 11 条
  • [1] BACHEM A, 1982, APPL MODERN MATH
  • [2] Conley C, 1978, CBMS REGIONAL C SERI, V38
  • [3] Gradient-like flows on high-dimensional manifolds
    Cruz, RN
    De Rezende, KA
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1999, 19 : 339 - 362
  • [4] DEREZENDE KA, 1993, T AM MATH SOC, V340, P767
  • [5] GRADIENT-LIKE FLOWS ON 3-MANIFOLDS
    DEREZENDE, KA
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1993, 13 : 557 - 580
  • [6] NONSINGULAR SMALE FLOWS ON S3
    FRANKS, J
    [J]. TOPOLOGY, 1985, 24 (03) : 265 - 282
  • [7] SUBSTITUTES, COMPLEMENTS AND RIPPLES IN NETWORK FLOWS
    GRANOT, F
    VEINOTT, AF
    [J]. MATHEMATICS OF OPERATIONS RESEARCH, 1985, 10 (03) : 471 - 497
  • [8] MILNOR J, 2016, Ann. of Math. Stud., V51
  • [9] SCHRIJVER A, 1986, THEORY LINEAR INTEGR
  • [10] Tutte W. T., 1966, Connectivity in graphs, Mathematical Expositions