Calmodulin-dependent kinase kinase/calmodulin kinase I activity gates extracellular-regulated kinase-dependent long-term potentiation

被引:123
作者
Schmitt, JM [1 ]
Guire, ES [1 ]
Saneyoshi, T [1 ]
Soderling, TR [1 ]
机构
[1] Oregon Hlth & Sci Univ, Vollum Inst, Portland, OR 97239 USA
关键词
calcium; CaM kinase; ERK; LTP; synaptic plasticity; eIF4E;
D O I
10.1523/JNEUROSCI.4086-04.2005
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Intracellular Ca2+ and protein phosphorylation play pivotal roles in long-term potentiation (LTP), a cellular model of learning and memory. Ca2+ regulates multiple intracellular pathways, including the calmodulin-dependent kinases (CaMKs) and the ERKs ( extracellular signal-regulated kinases), both of which are required for LTP. However, the mechanism by which Ca2+ activates ERK during LTP remains unknown. Here, we describe a requirement for the CaMK-kinase ( CaMKK) pathway upstream of ERK in LTP induction. Both the pharmacological inhibitor of CaMKK, STO-609, and dominant-negative CaMKI (dnCaMKI), a downstream target of CaMKK, blocked neuronalNMDAreceptor-dependent ERK activation. In contrast, an inhibitor of CaMKII and nuclear-localized dnCaMKIV had no effect on ERK activation. NMDA receptor-dependent LTP induction robustly activated CaMKI, the Ca2+-stimulated Ras activator Ras-GRF1 (Ras-guanyl-nucleotide releasing factor), and ERK. STO-609 blocked the activation of all three enzymes during LTP without affecting basal synaptic transmission, activation of CaMKII, or cAMP-dependent activation of ERK. LTP induction itself was suppressed similar to50% by STO-609 in a manner identical to the ERK inhibitor U0126: either inhibitor occluded the effect of the other, suggesting they are part of the same signaling pathway in LTP induction. STO-609 also suppressed regulatory phosphorylation of two downstream ERK targets during LTP, the general translation factors eIF4E ( eukaryotic initiation factor 4) and its binding protein 4E-BP1 ( eukaryotic initiation factor 4E-binding protein 1). These data indicate an essential role for CaMKK and CaMKI to link NMDA receptor-mediated Ca2+ elevation with ERK-dependent LTP.
引用
收藏
页码:1281 / 1290
页数:10
相关论文
共 58 条
[1]   Modulation of the Ras/Raf/MEK/ERK pathway by Ca2+, and calmodulin [J].
Agell, N ;
Bachs, O ;
Rocamora, N ;
Villalonga, P .
CELLULAR SIGNALLING, 2002, 14 (08) :649-654
[2]  
[Anonymous], 1999, TIJDSCHRIFT GENDERST
[3]   Activation of H-Ras in the endoplasmic reticulum by the RasGRF family guanine nucleotide exchange factors [J].
Arozarena, I ;
Matallanas, D ;
Berciano, MT ;
Sanz-Moreno, V ;
Calvo, F ;
Muñoz, MT ;
Egea, G ;
Lafarga, M ;
Crespo, P .
MOLECULAR AND CELLULAR BIOLOGY, 2004, 24 (04) :1516-1530
[4]   Localization of translational components at the ultramicroscopic level at postsynaptic sites of the rat brain [J].
Asaki, C ;
Usuda, N ;
Nakazawa, A ;
Kametani, K ;
Suzuki, T .
BRAIN RESEARCH, 2003, 972 (1-2) :168-176
[5]   Sites of phosphorylation by protein kinase a in CDC25Mm/GRF1, a guanine nucleotide exchange factor for Ras [J].
Baouz, S ;
Jacquet, E ;
Accorsi, K ;
Hountondji, C ;
Balestrin, M ;
Zippel, R ;
Sturani, E ;
Parmeggiani, A .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (03) :1742-1749
[6]   Regulatory phosphorylation of AMPA-type glutamate receptors by CaM-KII during long-term potentiation [J].
Barria, A ;
Muller, D ;
Derkach, V ;
Griffith, LC ;
Soderling, TR .
SCIENCE, 1997, 276 (5321) :2042-2045
[7]   Modulation of AMPA receptor unitary conductance by synaptic activity [J].
Benke, TA ;
Lüthi, A ;
Isaac, JTR ;
Collingridge, GL .
NATURE, 1998, 393 (6687) :793-797
[8]  
Buchsbaum R, 1996, MOL CELL BIOL, V16, P4888
[9]   Characterization of a calmodulin kinase II inhibitor protein in brain [J].
Chang, BH ;
Mukherji, S ;
Soderling, TR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (18) :10890-10895
[10]   Calcium/calmodulin-dependent protein kinase II and synaptic plasticity [J].
Colbran, RJ ;
Brown, AM .
CURRENT OPINION IN NEUROBIOLOGY, 2004, 14 (03) :318-327