Extraction of transcription regulatory signals from genome-wide DNA - protein interaction data

被引:25
作者
Garten, Y [1 ]
Kaplan, S [1 ]
Pilpel, Y [1 ]
机构
[1] Weizmann Inst Sci, Dept Mol Genet, IL-76100 Rehovot, Israel
基金
以色列科学基金会;
关键词
D O I
10.1093/nar/gki166
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Deciphering gene regulatory network architecture amounts to the identification of the regulators, conditions in which they act, genes they regulate, cis-acting motifs they bind, expression profiles they dictate and more complex relationships between alternative regulatory partnerships and alternative regulatory motifs that give rise to sub-modalities of expression profiles. The 'location data' in yeast is a comprehensive resource that provides transcription factor-DNA interaction information in vivo. Here, we provide two contributions: first, we developed means to assess the extent of noise in the location data, and consequently for extracting signals from it. Second, we couple signal extraction with better characterization of the genetic network architecture. We apply two methods for the detection of combinatorial associations between transcription factors (TFs), the integration of which provides a global map of combinatorial regulatory interactions. We discover the capacity of regulatory motifs and TF partnerships to dictate fine-tuned expression patterns of subsets of genes, which are clearly distinct from those displayed by most genes assigned to the same TF. Our findings provide carefully prioritized, high-quality assignments between regulators and regulated genes and as such should prove useful for experimental and computational biologists alike.
引用
收藏
页码:605 / 615
页数:11
相关论文
共 28 条
  • [1] Systematic management and analysis of yeast gene expression data
    Aach, J
    Rindone, W
    Church, GM
    [J]. GENOME RESEARCH, 2000, 10 (04) : 431 - 445
  • [2] Identifying cooperativity among transcription factors controlling the cell cycle in yeast
    Banerjee, N
    Zhang, MQ
    [J]. NUCLEIC ACIDS RESEARCH, 2003, 31 (23) : 7024 - 7031
  • [3] Computational discovery of gene modules and regulatory networks
    Bar-Joseph, Z
    Gerber, GK
    Lee, TI
    Rinaldi, NJ
    Yoo, JY
    Robert, F
    Gordon, DB
    Fraenkel, E
    Jaakkola, TS
    Young, RA
    Gifford, DK
    [J]. NATURE BIOTECHNOLOGY, 2003, 21 (11) : 1337 - 1342
  • [4] CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING
    BENJAMINI, Y
    HOCHBERG, Y
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) : 289 - 300
  • [5] Regulatory element detection using correlation with expression
    Bussemaker, HJ
    Li, H
    Siggia, ED
    [J]. NATURE GENETICS, 2001, 27 (02) : 167 - 171
  • [6] Remodeling of yeast genome expression in response to environmental changes
    Causton, HC
    Ren, B
    Koh, SS
    Harbison, CT
    Kanin, E
    Jennings, EG
    Lee, TI
    True, HL
    Lander, ES
    Young, RA
    [J]. MOLECULAR BIOLOGY OF THE CELL, 2001, 12 (02) : 323 - 337
  • [7] A genome-wide transcriptional analysis of the mitotic cell cycle
    Cho, RJ
    Campbell, MJ
    Winzeler, EA
    Steinmetz, L
    Conway, A
    Wodicka, L
    Wolfsberg, TG
    Gabrielian, AE
    Landsman, D
    Lockhart, DJ
    Davis, RW
    [J]. MOLECULAR CELL, 1998, 2 (01) : 65 - 73
  • [8] The transcriptional program of sporulation in budding yeast
    Chu, S
    DeRisi, J
    Eisen, M
    Mulholland, J
    Botstein, D
    Brown, PO
    Herskowitz, I
    [J]. SCIENCE, 1998, 282 (5389) : 699 - 705
  • [9] Adaptive quality-based clustering of gene expression profiles
    De Smet, F
    Mathys, J
    Marchal, K
    Thijs, G
    De Moor, B
    Moreau, Y
    [J]. BIOINFORMATICS, 2002, 18 (05) : 735 - 746
  • [10] DEQUARDCHABLAT M, 1991, J BIOL CHEM, V266, P15300