Deformation of subducted oceanic lithosphere

被引:74
作者
Houseman, GA
Gubbins, D
机构
[1] Monash Univ, Australian Geodynam Cooperat Res Ctr, Clayton, Vic 3168, Australia
[2] Monash Univ, Dept Math, Clayton, Vic 3168, Australia
[3] Univ Leeds, Dept Earth Sci, Leeds LS2 9JT, W Yorkshire, England
关键词
deformation; dynamics; oceanic lithosphere; rheology; subduction;
D O I
10.1111/j.1365-246X.1997.tb06598.x
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The deformation of subducted oceanic lithosphere is revealed by detailed studies-of the distribution of seismicity in Benioff zones and by the increasingly well-resolved images of the upper mantle obtained by seismic P-wave tomography. By using numerical experiments based on a simplified dynamical model of a subducted lithospheric slab, we test the idea that the observed deformation of the subducted slab results from a balance between internal buoyancy forces and the viscous stresses associated with deformation. The simplified model assumes that the lithosphere has uniform physical properties, it is denser and much more viscous than the upper mantle, and its penetration below 670 km depth is resisted by a step-like density increase at that level. The primary determinant of the style of deformation is the buoyancy number, F, a ratio of buoyancy stress generated by the mass anomaly in the slab to the stress associated with viscous deformation at a strain rate U-0/L, defined in terms of subduction rate U-0 and slab thickness L. For a small buoyancy number, deformation of the slab is dominated by viscous flexure. For large F, down-dip extension of the slab appears to dominate, and a buckling instability of the slab is observed if there is resistance to penetration of the 670 km level. The transition value of F at which this change in behaviour is observed is about 0.05 for constant viscosity, and about 0.2 for stress-dependent viscosity with a stress versus strain-rate exponent of n = 3. With n = 3, a boudinage-type instability of the slab is observed for large F. Penetration of the slab below the 670 km level depends on the density contrast between slab and lower mantle. Resisted only by the density difference, the slab may initially penetrate several hundred kilometres below the 670 km level (for plausible density parameters) before a buckling instability causes this part of the slab to rotate and ascend. Comparison of the deforming slab geometry and stress held with seismicity distribution and tomographic images from the Tonga subduction zone suggests that the effective buoyancy number F for this slab is approximately equal to the transition value that we determined experimentally. We use this constraint to estimate average rheological parameters for the Tonga slab which, when compared with published creep deformation laws for olivine, are consistent with the average temperature of the slab being about 0.4 to 0.45 times the melting temperature, based on constitutive laws for olivine. At shallow depths (< 100 km) these temperatures correspond to around 590 degrees C for wet olivine or around 700 degrees C for dry olivine.
引用
收藏
页码:535 / 551
页数:17
相关论文
共 68 条
[1]   THERMALLY INDUCED PHASE-CHANGES, LATERAL HETEROGENEITY OF THE MANTLE, CONTINENTAL ROOTS, AND DEEP SLAB ANOMALIES [J].
ANDERSON, DL .
JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH AND PLANETS, 1987, 92 (B13) :13968-13980
[2]   THE RELATIONSHIP BETWEEN WADATI-BENIOFF ZONE GEOMETRY AND P-AXE, T-AXE AND B-AXE OF INTERMEDIATE AND DEEP-FOCUS EARTHQUAKES [J].
APPERSON, KD ;
FROHLICH, C .
JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH AND PLANETS, 1987, 92 (B13) :13821-13831
[3]   DESCENT OF LITHOSPHERE BENEATH NEW HEBRIDES, TONGA-FIJI AND NEW ZEALAND - EVIDENCE FOR DETACHED SLABS [J].
BARAZANGI, M ;
ISACKS, BL ;
OLIVER, J ;
DUBOIS, J ;
PASCAL, G .
NATURE, 1973, 242 (5393) :98-101
[4]   STRESS AND TEMPERATURE IN SUBDUCTION SHEAR ZONES - TONGA AND MARIANA [J].
BIRD, P .
GEOPHYSICAL JOURNAL OF THE ROYAL ASTRONOMICAL SOCIETY, 1978, 55 (02) :411-434
[5]   APPLICABILITY OF A UNIVERSAL ELASTIC TRENCH PROFILE [J].
CALDWELL, JG ;
HAXBY, WF ;
KARIG, DE ;
TURCOTTE, DL .
EARTH AND PLANETARY SCIENCE LETTERS, 1976, 31 (02) :239-246
[6]   The influence of trench migration on slab penetration into the lower mantle [J].
Christensen, UR .
EARTH AND PLANETARY SCIENCE LETTERS, 1996, 140 (1-4) :27-39
[7]   THE INTERACTION OF A SUBDUCTING LITHOSPHERIC SLAB WITH A CHEMICAL OR PHASE-BOUNDARY [J].
CHRISTENSEN, UR ;
YUEN, DA .
JOURNAL OF GEOPHYSICAL RESEARCH, 1984, 89 (NB6) :4389-4402
[8]   SLAB PENETRATION INTO THE LOWER MANTLE BENEATH THE MARIANA AND OTHER ISLAND ARCS OF THE NORTHWEST PACIFIC [J].
CREAGER, KC ;
JORDAN, TH .
JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH AND PLANETS, 1986, 91 (B3) :3573-+
[9]   VISCOUS-FLUID BUCKLING OF PLANE AND AXISYMMETRIC JETS [J].
CRUICKSHANK, JO ;
MUNSON, BR .
JOURNAL OF FLUID MECHANICS, 1981, 113 (DEC) :221-239
[10]   PENETRATION OF PLATES AND PLUMES THROUGH THE MANTLE TRANSITION ZONE [J].
DAVIES, GF .
EARTH AND PLANETARY SCIENCE LETTERS, 1995, 133 (3-4) :507-516