Global optimization solution of robust estimation

被引:76
作者
Baselga, Sergio [1 ]
机构
[1] Univ Politecn Valencia, Geodesy & Photogrammetry Dept, Valencia 46022, Spain
关键词
geodetic surveys; optimization; least squares method; errors; estimation;
D O I
10.1061/(ASCE)0733-9453(2007)133:3(123)
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Robust estimation has proved to be a valuable approach to adjust a surveying network when there are systematic or gross errors in the observations or systematic errors in the functional model. In the present paper we propose to solve robust estimation as a global optimization problem. In particular, we will apply the simulated annealing method and genetic algorithms. The usual strategy of iteratively reweighed least squares is analyzed versus the global optimization approach. Results show that in problematic cases robust estimation is not truly robust unless performed by a global optimization method.
引用
收藏
页码:123 / 128
页数:6
相关论文
共 31 条
[1]  
Andrews D.F., 1972, ROBUST ESTIMATES LOC
[2]  
[Anonymous], CAN SURVEYOR
[3]  
[Anonymous], 1982, MANUSCR GEODAET
[4]  
[Anonymous], 1993, J GEOD PHOTOGRAM SUR
[5]  
[Anonymous], P 14 C INT SOC PHOT
[6]  
[Anonymous], 1975, Ann Arbor
[7]  
[Anonymous], J CHEM PHYS
[8]  
[Anonymous], 1987, SIMULATED ANNEALING
[9]   Critical limitation in use of τ test for gross error detection [J].
Baselga, Sergio .
JOURNAL OF SURVEYING ENGINEERING, 2007, 133 (02) :52-55
[10]   First-order design of geodetic networks using the simulated annealing method [J].
Berné, JL ;
Baselga, S .
JOURNAL OF GEODESY, 2004, 78 (1-2) :47-54