Potential mechanism(s) involved in the regulation of glycogen synthesis by insulin

被引:151
作者
Srivastava, AK [1 ]
Pandey, SK [1 ]
机构
[1] Univ Montreal, CHUM, Res Ctr, Dept Med, Montreal, PQ H2W 1T8, Canada
基金
英国医学研究理事会;
关键词
glycogen synthesis; glycogen synthase; glycogen synthase kinase-3; protein kinase B; protein phosphatase-1; phosphatidyl inositol 3-kinase;
D O I
10.1023/A:1006857527588
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Stimulation of glycogen synthesis is one of the major physiological responses modulated by insulin. Although, details of the precise mechanism by which insulin action on glycogen synthesis is mediated remains uncertain, significant advances have been made to understand several steps in this process. Most importantly, recent studies have focussed on the possible role of glycogen synthase kinase-3 (GSK-3) and glycogen bound protein phosphatase-1 (PP-1G) in the activation of glycogen synthase (GS) - a key enzyme of glycogen metabolism. Evidence is also accumulating to establish a link between insulin receptor induced signaling pathway(s) and glycogen synthesis. This article summarizes the potential contribution of various elements of insulin signaling pathway such as mitogen activated protein kinase (MAPK), protein kinase B (PKB), and phosphatidyl inositol 3-kinase (PI3-K) in the activation of GS and glycogen synthesis.
引用
收藏
页码:135 / 141
页数:7
相关论文
共 65 条
[1]   Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase B alpha [J].
Alessi, DR ;
James, SR ;
Downes, CP ;
Holmes, AB ;
Gaffney, PRJ ;
Reese, CB ;
Cohen, P .
CURRENT BIOLOGY, 1997, 7 (04) :261-269
[2]   Mechanism of activation of protein kinase B by insulin and IGF-1 [J].
Alessi, DR ;
Andjelkovic, M ;
Caudwell, B ;
Cron, P ;
Morrice, N ;
Cohen, P ;
Hemmings, BA .
EMBO JOURNAL, 1996, 15 (23) :6541-6551
[3]  
Azpiazu I, 1996, J BIOL CHEM, V271, P5033
[4]   STIMULATION OF PROTEIN PHOSPHATASE-1 ACTIVITY BY INSULIN IN RAT ADIPOCYTES - EVALUATION OF THE ROLE OF MITOGEN-ACTIVATED PROTEIN-KINASE PATHWAY [J].
BEGUM, N .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (02) :709-714
[5]  
BEGUM N, 1995, ADV PROT PHOS, V2, P263
[6]   A RETROVIRAL ONCOGENE, AKT, ENCODING A SERINE-THREONINE KINASE CONTAINING AN SH2-LIKE REGION [J].
BELLACOSA, A ;
TESTA, JR ;
STAAL, SP ;
TSICHLIS, PN .
SCIENCE, 1991, 254 (5029) :274-277
[7]   INSULIN ACTION AND THE INSULIN SIGNALING NETWORK [J].
CHEATHAM, B ;
KAHN, CR .
ENDOCRINE REVIEWS, 1995, 16 (02) :117-142
[8]   AKT2, A PUTATIVE ONCOGENE ENCODING A MEMBER OF A SUBFAMILY OF PROTEIN-SERINE THREONINE KINASES, IS AMPLIFIED IN HUMAN OVARIAN CARCINOMAS [J].
CHENG, JQ ;
GODWIN, AK ;
BELLACOSA, A ;
TAGUCHI, T ;
FRANKE, TF ;
HAMILTON, TC ;
TSICHLIS, PN ;
TESTA, JR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (19) :9267-9271
[9]   MOLECULAR-CLONING AND CHARACTERIZATION OF A NOVEL PUTATIVE PROTEIN-SERINE KINASE RELATED TO THE CAMP-DEPENDENT AND PROTEIN-KINASE-C FAMILIES [J].
COFFER, PJ ;
WOODGETT, JR .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1991, 201 (02) :475-481
[10]   MODULAR BINDING DOMAINS IN SIGNAL-TRANSDUCTION PROTEINS [J].
COHEN, GB ;
REN, RB ;
BALTIMORE, D .
CELL, 1995, 80 (02) :237-248